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_IVE OVERVIEW

The _ of this report is to document research to develop

strategies for concurrent processing of complex algorithms in data

driven architectures performed under Grant N_I-683 during the period

May 1988 to August 1989. In this overview, the problem domain is

described, the motivation for this researc_ is explained, and a

s_ of research activities are presented. The detailed

description of the investigation is taken from the doctoral

dissertation by Dr. Sukhamoy Sore entitled "Perfo_ Modeling and

Enhancement for the ATAMM Data Flow Architecture".

During earlier grant periods, a compatational model called the

Algorithm To Architecture Mapping Model (ATA_4) was formulated for

mapping large-grain, decision-free algorithms to a multicomputer data

flow architecture. Major applications are expected to be real-time

implementation of control and signal processing algorithm_ where

performance is required to be highly predictable and fault tolerant.

Of interest is the periodic execution of algorithms. For our

purposes, an algorithm is expressed as a directed graph where vertices

(nodes) represent algorithm operations and edges represent data sets

or signals, large-grain refers to the assumption that the time

required to perform algorithm operations is large compared to the time

required to move data from one node to another. Decision-free refers

to the absence of data dependent paths in the algorithm graph

xi



representation. The architocture i g aggLm_l to consist of two to

twenty flmctional units or resources each having a capability of

processing, communication, and memory. The resources share a common

global memory which is centralized or distributed. The coordination

of resources in relation to data and control flow is directed by a

graph manager. The graph manager also is centralized or distributed.

Assignment of a ft_Ycional unit to a specific algorithm node is made

by the graph manager according to ATAFN rules and a priority ordering

of algorithm nodes. All assignments are non-preemptive for minimum

co_nunication cost. In a specific hardware setting, the graph

manager, global memory, and fLmctional unit activities together form

the ATAMM Multicomputer Operating System or AMOS.

The ATAMM model is important because it specifies a criteria for

a multicom_xlter operating system to achieve predictable and highly

fault tolerant performarr_e, and it creates a p]atform for

investigating different algorithm decompositions and implementation

strategies in a hardware independent context. In earlier reports, the

use of the ATAMM model is described for determining analytically

performance bounds and developing an operating strategy for optimum

time performance. In addition, the construction of an ATAMM defined

data flow architecture and development of sirmllation and analysis

tools are reported. During the present grant period, research is

carried out for performance modeling and performance enhancement for

the ATAMM data flow architecture. In order to have a predictable

performance, it is necessary that assignment of algorithm nodes to

functional units be as much priority independent as possible. This is

doi_ to avoid the priority inversion problem. Even for small run-time

xii



variations of _ication delays and execution time variations, a

low priority algorithm node may be enabled before a high priority

algorithm node. As the assignment is non-preemptive, this may

completely change the graph execution pattern and resource

requirements. In order to overcome this problem, it is suggested that

the operating system (AMOS) transform the algorithm graph and control

input data injection interval so that a functional unit always is

available for every enabled algorithm node. In other words, even if

priority inversion changes the order of execution of algorithm nodes,

graph execution patterns and resource requirements will not be changed

drastically. Two performance measures, TBIO and TBO, are defined for

periodic processing of algorithms. TBIO is an indicator of com_ting

speed for an algorithm. TBO is a measure of the time interval between

algorithm outputs, and the inverse of TBO indicates throughput. The

time performance (TBIO, TBO) and the number of required resources

define an operating point for AMOS. If enough functional units are

available, optimum TBIO and TBO can be achieved. However, if a

limited number of resources is available, one must increase either TBO

or TBIO, or a combination of both. Two key methods for shifting the

operating point are control of the input injection interval and

traru_formation of the algorithm graph. Transformation of the

algorithm graph is achieved by adding dunm_ nodes (transitions) and

control edges (places) as described below. A dummy node is an

algorithm node which implements an identity operation and requires

zero time. It is used as a buffer to provide additional storage space

for the output of an algorithm node. A dummy node is a pure memory

operation and does not require a resource. A control edge is an

xiii



algorithm edge which imposes a precedence relation amongtwo algorithm

nodes but does not imply data dependency. This type of edge is used

to delay the execution of a node. Thus, predictable performance is

achievable even if the numberof functional units decreases to i. An

ATAMMsimulator and experiments on a three resource testbed provide

verification of performance modeling and graph transformation method_.

The use of brand namesin this report is for completeness, and

does not indicate NASAendorsement.

xiv



_ONE

INTRODUCTION

i. 0 Preface

Algorithm _ToArchitecture _MappingModel (ATAMM)is a new graph

theoretic model from which the rules for data and control flow in a

homogeneous,multicomputer, data flow architectures may be defined

[i, 2]. The subject of this dissertation is the investigation of

concurrent processing in such an ATAMMdefined architecture for

large-grain, decision-free algorithms. Performance modeling,

performance _t, and the development of operating strategies

for periodic execution of such algorithms are the key research

objectives. Chapter One is an introduction of ATAMMand a discussion

of the motivation behind the research. Background for the ATAMMmodel

and this research is presented in Section i.I. The computational

problem representation by the ATA_4model is presented in Section

1.2. The objectives and organization of this dissertation are

described in Section 1.3.

i. 1 Background

The principles of computer architecture design historically have

been based upon the von Neumannorganization [3 ]. These principles

have led to architectures consisting of a single computer in which low

level machine language instructions perform simple operations on

elementary operands, and centralized, sequential control of
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computation is employed. Despite the fact that electronic components

are becoming increasingly faster, the desired computer performance has

always been muchmore than that which is obtainable with the von

Neumannorganization. Advances in the solid state technology alone

are not ex_ to be enough to produce computers to meet the

computational needs of the future. There is a growing agreement that

the next (fifth) generation of computers will be based upon non-yon

Neumannstructures.

Recently, a numberof new computer architectures have been

proposed from which a number of computer systems have been built [3].

The need for new computer architectures has been motivated mainly by

three objectives. First, there is the desire to increase computer

performance through the use of concurrency. Second, there is the

desire to more fully exploit very large scale integration (VISI) in

the design of computers. Third, there is interest in new programming

methods which facilitate the mapping of algorithms onto

architectures. These ideas suggest a decentralized computer

architecture in which a number of independent computers are to work

together. These independent computers, each having a capability for

processing, communication, and memory, can be as large as a

geographically distributed mainframe computer or as small as

microcomputers on a single VISI chip. Unfortunately, strategies for

interconnecting and programming such architectures based upon yon

Neumann principles have not evolved. It appears that yon Neumann

organization principles are not adequate to address the complex issues

of scheduling, coordination, and communication.
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Strategies for control of computations on decentralized computer

architectures can be classified br(_idly as control flow, demand

driven, and data driven. In control flow computers, explicit flows of

control cause the execution of instructions. In demand driven

architectures, the execution of operations are triggered by the

requirements of outputs or results. In data driven architectures

(also known as data flow computers), the availability of operands

trigger the execution of operations. Data flow architectures are the

primary interest of this research because of their suitability for

concurrent processing of complex algorithms.

A useful mathematical tool for modeling execution of complex

algorithms on a data flow decentralized architecture is the Petri

net. Petri nets were first developed in 1962 by Carl Petri [4], and

later were identified as a useful analysis tool in the work of Holt

and Commoner [5]. A comprehensive treatment of Petri nets is

presented in [6]. One problem with the Petri net model is that it

tends to be too complicated to analyze. An important subclass of

Petri net is the marked graph where each place has exactly one

incoming and one outgoing arc. Marked graphs can be used to model the

processing of decision-free algorithms [7]. Properties such as

liveness, safeness, and reachability can be achieved for marked graph

models [6]. Procedures also exist for expanding and reducing marked

graphs while preserving these properties [8]. These graph features

are suitable for modeling the succession of single events such as data

and status conditions. In this dissertation, the marked graph is used

as a modeling tool for data driven computations.



The data flow concept has already attracted the attention of a great

many researchers, and a numberof data flow computers have been built

[9]. However, only a few researchers have tried to develop a

theoretical model for evaluating computation in a data driven

architecture [i0]. These models do not appear to be adequate to

address the complex issues of scheduling, coordination, and

communication. Therefore, the performance of algorithms is often

unpredictable and hardware dependent in these data flow computers.

There is a need for a simple, but effective, model for data

driven computations in order to investigate the relative merits of

different algorithm decompositions and implementation strategies in a

hardware independent context. Ongoing research at Old Dominion

University has led to the development of a newmarked graph model for

describing data and control flow associated with the execution of

algorithms in data flow architectures [2]. The model is identified by

the acronym ATAMMwhich represents Algorithm To Architecture _Mapping

_Model[ii]. Specifications derived from the model lead directly to

the description of a data flow architecture and will be called the

ATAMMdata flow architecture henceforth. The availability of the

ATAMMmodel is important for at least three reasons. First, it

provides a context in which to investigate algorithm decomposition

strategies without the need to specify a specific ATAMMdata flow

architecture. Second, the model identifies the data flow and control

dialogue required of any ATAMMdata flow architecture which implements

the algorithm. Third, the model provides a basis for analytically

calculating performance bounds and developing a methodology for

improvement in performance.



The problem domain addressed by the ATAMMdata flow architecture

and this research consists of decision-free, large-grain, complex

algorithms which are assumedto be executed periodically in a

multicomputer environment. The algorithms are assumedto require

large computations which would include such computations as matrix

addition, multiplication, etc. The anticipated multicomputer

environment is assumedto consist of two to twenty identical computers

or functional units each having a capability of processing,

communication and memory. The primary reason for such assumptions is

the objective of implementing control and signal processing algorithms

in next generation multicomputer architectures for real time

applications on future spacecraft. The granularity level of the

algorithm decomposition is kept high to avoid communication

bottlenecks as observed in many fine-grain data flow architectures

[12]. The range of functional units is suggested due to the

large-grained aspect of the algorithm decomposition. Of interest is

the definition of a performance model so that the performance of the

algorithms can be evaluated and improved. Also an operating procedure

is needed for obtaining predictable performance with respect to

available computing elements.

1.2 Problem Representation by the ATAMM Model

The ATAMM model consists of a set of Petri net marked graphs

which incorporate general specifications of _ication and

processing associated with each computational event in a data flow

architecture. In this section, the computational problem is

represented by the ATAMM model. First of all a detailed description
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of the problem context is stated. This is followed by the definition

of the ATAMMmodel consisting of the algorithm marked graph, the node

marked graph, and the computational marked graph. Somefamiliarity

with Petri nets [6] and marked graphs [13] is assumed.

A problem description normally results in the definition of a

function given by the triple (X, Y, F), where X represents the set of

admissible inputs, Y the set of admissible outputs, and F: X -> Y the

rule of correspondence which unambiguously assigns exactly one element

from Y to each element of X. Associated with a computational problem

is one or more algorithms. An algorithm is an explicit mathematical

statement, expressed as an ordered set of primitive operations, which

explains how to implement the rule of correspondence F. A primitive

operation is a complex computation. Matrix multiplication and

addition are examples of primitive operations. In general, a given

problem can be decomposed by several different primitive operator

sets. Also, for a given primitive operator set, there are often

different ordering of primitive operations which can be specified to

carry out the problem. Of special interest are algorithm

decompositions in which two or more primitive operations can be

performed concurrently. For such decompositions, the potential exists

for decreasing the computational time required to solve the problem by

increasing the computational resources which implement the primitive

operations.

The hardware environment for executing the decomposed algorithms

is assumed to consist of R identical computers or functional units

(FUN's), where R has a value in the range of two to twenty. These

computers or functional units are also denoted by the terms



"computing element" or "resource". Each functional unit is a

processor having local memoryfor program storage and temporary input

and output data containers. Each functional unit can execute any

algorithm primitive operation. The functional units share a common

global memory (GIM), which maybe either centralized or distributed.

The coordination of functional units in relation to data and control

flow is directed by the graph manager (GM). The graph manager also

may be centralized or distributed. Output created by the completion

of a primitive operation is placed into global memory only after the

output data containers have been emptied. That is, outputs must be

consumed as inputs to successor primitive operations before allowing

new data to fill the output locations. Assignment of a functional

unit to a specific algorithm primitive operation is made by the graph

manager only when all inputs required by the operation are available

in global men_ry and a functional unit is available.

An algorithm marked graph (AMG) is a marked graph which

represents a specific algorithm decomposition. Transitions and places

are represented as vertices and directed edges respectively. Vertices

of the algorithm marked graph are in a one-to-one correspondence with

each c_-_rrenc_ of a primitive operation. The transition times

represent the computation times of the respective primitive

operations. The algorithm marked graph contains an edge (i, j)

directed from vertex i to vertex j if the output of vertex i is an

input for vertex j. Edge (i, j) is marked with a token if an output

from vertex i is available as an input to vertex j. By the rules of

the marked graph, the computation of a vertex can only be done when

all the incoming edges have a token on them. When constructing an
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algorithm marked graph, vertices (transitions) are displayed as

circles, and edges (places) are displayed as directed line segments

connecting appropriate vertices. The presence of a token on an edge

is indicated by a solid dot placed on the edge. Source transitions

and sink transitions for input and output signals are represented as

squares. Sources for constants are not usually included in the

algorithm marked graph; however, triangles are used for this purpose

when necessary.

To illustrate the construction of an algorithm marked graph,

consider the problem of computing the output of a discrete linear,

time invariant system given a sequ_ of inputs to the system. Let

the system be described by the state equation

x(k) = Ax(k-l) + Bu(k)

and the output equation

y(k) = Cx(k),

where x is a p-vector, u is an m-vector, and y is an r-vector. The

primitive operations are defined as matrix multiplication and vector

addition, and the natural algorithm decomposition resulting from the

state equation description is selected. The algorithm marked graph

for this decomposed algorithm is shown in Figure i.i. The initial

marking indicates that initial condition data are available.

The algorithm marked graph is a useful tool for representing

decomposed algorithms and for displaying data flow within an
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algorithm. However, the algorithm marked graph does not display

procedures that a computing structure must manifest in order to

perform the computing task. In addition, the issues of control, time

performance, and resource management are not apparent in this graph.

These important aspects of concurrent processing are included in the

ATAMM model through the definition of two additional graphs. The node

marked graph (NMG) is defined to model the execution of a primitive

operation. The computational marked graph (C_G), obtained from the

AMG and the NMG by a set of construction rules, integrates both the

algorithm requirements and the computing environment requirements into

a comprehensive graph model. These additional marked graphs are

defined below.

The node marked graph (NMG) is a Petri net representation of the

performance of a primitive operation by a functional unit. Three

primary activities: reading (r) of input data from global memory,

processing (p) of input data to compute output data, and writing (w)

of output data to global memory, are represented as transitions

(vertices) in the NMG. Data and control flow paths are represented as

places (edges), and the presence of signals is notated by tokens

marking appropriate edges. The conditions for firing the process and

write transitions of the NMG are as defined for a general Petri net,

while the read transition has one additional condition for firing. In

addition to having a token present on each incoming signal edge, a

functional unit must be available for assignment to the primitive

operation before the read node can fire. Once assigned, the

functional unit is used to implement the read, process, and write

operations before being returned to a queue of available functional
,¢
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units. The initial marking for an NMG consists of a single token in

the Process Ready place. The NMG model in shown in Figure 1.2.

A computational marked graph (CMG) is constructed from the AMG

and the NMG by the following rules:

I) Source and sink nodes in the algorithm marked graph are

represented by source and sink nodes in the (IMG.

2) Nodes corresponding to primitive operations in the algorithm

marked graph are represented by NMG's in the CMG.

3) Edges in the algorithm marked graph are represented by edge

pairs, one forward directed for data flow and one backward

directed for control flow, in the C_K;.

The forward directed edge goes from predecessor write transition

to successor read or sink transition. This forward edge is also shown

as part of the NMG where it is the OF and IF edge of the predecessor

and successor respectively. The backward directed edge goes from

successor read transition to predecessor read or source transition.

This backward edge is also shown as part of the NMG where it is OE and

IE edge of predecessor and successor respectively. The initial

marking for the edge pair consists of a single token in the forward

directed place if data are available, or a single token in the

backward directed place if data are not available.

The play of the _ proceeds according to the following graph

rules:

i) A node is enabled when all incoming edges are marked with a

token. An enabled node fires by encumbering one token from

each incoming edge, delaying for some specified transition

time, and then depositing one token on each outgoing edge.
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OE

IF

R4

_--- tt----_ Write
_ocl

OF

NMG EDGE LABELS

IF Input Buffer Full

IE Input Buffer Empty
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PR Process Ready

OE Output Buffer Empty

OF Output Buffer Full

Figure 1.2. ATAMM node marked graph model.
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2) A source node and a sink node fire when enabled without

regard for the availability of a functional unit.

3) A primitive operation is initiated when the read node of an

NMG is enabled and a functional unit is available for

assignment to the NMG. A functional unit remains assigned to

an NMG until completion of the firing of the write node of

the NMG.

In order to illustrate the construction of a computational marked

graph, the CMG corresponding to the algorithm marked graph of Figure

I.i is shown in Figure 1.3. The computational marked graph is useful

because it clearly displays the data and control flow which must occur

in any hardware implementation of the algorithm, and because it

provides a hardware independent context in which to evaluate algorithm

performance.

The complete ATAMM model consists of the algorithm marked graph,

the node marked graph, and the computational marked graph. A

pictorial display of this model is shown in Figure I. 4. ATAMM model

characteristics are described in detail in the Appendix.

1.3 Objectives and Organization of Dissertation.

The behavior and performance for periodic execution of complex

algorithms in the ATAMM data flow architecture is investigated in this

dissertation. The problem domain consists of large-grain,

decision-free algorithms. Tne major research objectives are

threefold. First, a performance model is established. Second, rules

for transformation of algorithms for performance enhancement and

reduction of computing element requirements are identified. Third,
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operating strategies are developed for optimum time performance and

for sub-optimum time performance under limited availability of

computing elements.

The dissertation is organized in five chapters and an appendix.

In the Appendix ATAMM model characteristics, some of which are used in

this dissertation, are described in detail. Definitions of the

computing environment, performance measures, and evaluation of

performance bounds and resource requirements are presented in Chapter

Two. In Chapter Three, algorithm transformations for improving

performance, and methods for enforcing desired resource envelope and

inducing structural changes in algorithm marked graphs are described.

The definition and characterization of an operating point design

procedure, and the results of simulations are presented in Chapter

Four. Finally, conclusions from this research and future research

topics are presented in Chapter Five.



C_TER _WO

PERFORMANCEMODEL

2.0 Introduction

A performance model for the ATAMM(_AlgorithmTo Architecture

_Mapping_odel) data flow architecture is described in this chapter.

The objective is to determine ocmputing speed, throughput capacity and

resource (computing element) need for implementing decision-free

large-grain algorithms on the ATAMMdata flow architecture. The

computing environment and performance measures are defined in Section

2.1. In Section 2.2, characteristics of marked graphs, which are

needed to establish the performance model, are described. Graph

theoretic lower bounds for the time performance of algorithm marked

graphs operated in the ATAMMdata flaw ardhitecture are established in

Section 2.3. Resource needs are predicted and performance bounds in

the presence of resource limitations are evaluated in Section 2.4. A

summaryof the chapter is presented in Section 2.5.

2.1 Performance Measures

The inportance of the ATAMMmodel is that it provides a hardware

independent context in which to investigate the performance of

decomposedalgorithms as long as the architecture obeys the rules of

the (_G. It is assumedthat a decomposedalgorithm is impl_ted in

a ATAMMdata flow architecture containing R identical resources or

17
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functional units. Each functional unit is capable of performing any

of the primitive operations whose sequence defines the decomposition.

The tokens on the CMG indicate the data and control flow that must

occur in any hardware implementation of the algorithm. Consider a (_G

in some initial marking. A task is defined when, for a given input

data packet, the CMG proceeds through all its marking and returns to

its initial marking. Equivalently, a task is the sequence of

computations defined by the AMG operations on a given input data set.

Task output occurs when a corresponding output data token is deposited

at the output sink node. It should be noted that task output and task

completion do not always coincide. In many iterative signal

processing algorithms, computations are required to generate initial

conditions for the next iteration which often occur after the output

has been calculated. For control and signal processing applications,

tasks are repeated periodically with new input data sets (data

packets). New tasks are begun when new data sets are injected as

input tokens from the input source node at a finite interval of time

so that computing time and resource needs are identical for all data

sets. Of interest is the relationship of concurrency to performance

for repeated inputs.

Computational co_ occurs in two ways. First, several

transitions of the task may be performed on an individual data set

simultaneously. This type of concurrency is termed parallel

concurrency because it is the result of inherent parallelism in the

algorithm. Parallel concurrency has a direct effect on task computing

speed. It is limited by the number of transitions that can
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be performed simultaneously for the given task and by the numberof

functional units available to perform the transitions. Second,

transitions of the task belonging to different data sets can be

performed simultaneously in the computing system. This type of

cogency is referred to as pipeline concurrency because the task is

repeated for successive data sets, like a pipeline. This type of

concurrency has a direct effect on throughput. Throughput is limited

by the capacity of the graph to aoco_te additional data sets and

by the number of functional units available to implement the algorithm

periodically.

Three performance measures, TBIO, T_, and TBO, are now defined

for concurrent processing of complex algorithms in ATAMM data flow

architectures. TBIO and TT are indicators of computing speed for a

task and thus reflect the degree of parallel concurrency. TBO is a

measure of time interval between task outputs. The inverse of TBO

indicates throughput, and thus reflects the degree of pipeline

concurrency.

Definition 2. i: TBIO. The performance measure TBIO (time between

input and output) is the elapsed computing time between a task input

and the corresponding task output.

Definition 2.2: TT. The performance measure T_ (task time) is the

elapsed computing time between a task input and the completion of all

computation associated with that task input.

D_finition .2.3: TBO. The performance measure TBO (time between

outputs) is the elapsed computing time between successive task outputs

when the graph is operating periodically at steady state.

To illustrate, an algorithm marked graph for an aircraft flight

simulation is shown in Figure 2.1. S I is the input source
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representing flight plan data. SO is the output sink representing

moving mapand flight instruments data. Transitions of the graph

represent activities. Places represent data dependencyor precedence

relation. Tokens on places are initial tokens representing initial

condition data. As an example, transition 3 represents inertial

navigation computation and requires ten time units for processing.

Time units associated with transitions are relative and are measured

with respect to a reference. Transition 7 (zero processing time) is

used to combine outputs of the coordinate transform computation

(moving map) and the auto-pilot computation (control for flight

insets). TBIO is the time to produce the outputs in SO for

flight plan data. qT is the time to finish all processing for a task

input. TBIO and TY need not be the same for all problems although

they are related. TBO is the time between arrival of successive

output tokens in the output data sink when the algorithm is executed

periodically at steady state.

2.2 Marked Graph C_k_racteristics

Marked graphs, a class of Petri nets, are used as a device for

expressing the ATAMM. A marked graph is viewed as a directed graph

where the vertices are the transitions and the edges are directed

places. In this section, concept of path and circuit for the marked

graph is developed. Only directed paths and circuits are of interest

to this dissertation. If not mentioned, a path or a circuit of a

marked graph should always be understood to be a directed path or a

directed circuit respectively. Some properties of the marked graph



21

o \o
v-- O _"

qll

(,,,1

.1.1

h

Q.

o

m

.=

Bll
m
q"

L

O

E

"i::
O

m

O

C

E



22

which are needed to establish a performance model are stated. Also,

circuits of the (]_G are classified. Let t i and Pi denote

transition i and place i respectively.

Definition 2.4: Directed Path. A directed path in a marked graph is

a finite alternating sequence of distinct transitions and distinct

directed places with the following property. The sequence begins and

ends with transitions and every place originates from the immediate

predecessor transition and ends on the immediate successor transition

in that sequence.

To illustrate, the sequence SI, Pl, tl, P2, t2, P3, t3, P4, and SO

is a directed path in Figure i.I. But the sequence tl, P2, t2, P6,

t4, P5, t2, P3, and t 3 is not a directed path in Figure I.i as

transition 2 is repeated twice in that sequence.

Definition 2.5: Directed Circuit. A directed circuit in a marked

graph is the same as a directed path except that beginning and end

transitions are the same in a directed circuit.

To illustrate, the sequence t2, P6, t4, P5 and t 2 is a directed

circuit in Figure I.i.

Definition 2.6: Parallel Paths. Parallel paths are directed paths

which have identical beginning and ending transitions; however, all

other transitions and places on all directed paths are distinct.

In Figure 2.2, the sequence tl, P2, t2, P3, t3, P4, t4, P5, and

t5 and the sequence tl, P6, t6, P8 _ and t 5 are parallel paths.

Definition 2.7: Group Of Paths. Group of paths are a finite number

of directed paths from a marked graph.

To illustrate, the sequences t2, P7, t7, P9, t4 and tl, P6, t6,

P8, t5 form a group of paths in Figure 2.2.
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Definition 2.8: Path Lenqth. The length of a directed path in a

marked graph is defined to be the summation of all the times for

transitions in that directed path.

Definition 2.9: Circuit Length. The length of a directed circuit in

a marked graph is defined to be the summation of all the times for

transitions in that directed circuit.

Definition 2. i0: Critical Path. The critical path among a group of

paths is the one which has the highest path length.

This definition of critical path is identical to the one used in

task scheduling [14, 15] and project management [16, 17].

To illustrate, let T(i) stand for the time of the ith

transition. In Figure I.I, let T(1) = 4, T(2) = I, T(3) = 5 and T(4)

= 6, T(SI) = 0 and T(So) = 0. Then, the directed circuit t2,

P6, t4, P5, and t 2 has length 7. The directed path used to illustrate

Definition 2.4 has length i0. The directed path SI, Pl, tl, P2, t2,

P6, and t4 has length ii. These two directed paths form a group of

paths. In that group of paths, the directed path from SI to t 4 is

the critical path. It is to be noted that there can be more than one

critical path in a group of paths.

Property 2. I. The critical path length of a group of paths is the

lowest possible time to move tokens from the input of the beginning

transition to the output of the end transition on all directed paths

of that group.

This is a property of the critical path known from critical-path

scheduling [14] and project manag_t [17]. In the context of a

marked graph, as the token has to move through all the transitions of

the directed path in order to reach the output of the end transition
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from the input of the beginning transition, tb_ minimum time required

is the length of the directed path. Considering all the directed

paths of the group, the lowest possible time to move tokens on all

directed paths frcm the input of the beginning transition to the

output of the end transition is the critical path length.

Property 2.2. With unlimited resources, tokens always take time equal

to critical path length to complete the move from the input of the

beginning transition to the output of the end transition on all

directed paths of the group.

This is another property of the critical path known frcm task

scheduling [14] and project mar_gement [17]. In the context of the

marked graph, with unlimited resources, a transition can always be

fired as soon as it is enabled by input data. Therefore, the lowest

possible time can actually be achieved. Hence, the critical path

length is the time to move all tokens from the _put of the beginning

transition to the output of the end transition.

Directed circuits are created in the computational marked graph

in four different ways. They are node, process, recursion and

parallel path circuits. Formal definitions of each kind of directed

circuit are presented below along with examples.

Definition 2. II: Node Circuit. This is a directed circuit in the

which is the only internal directed circuit of an NMG.

To illustrate, the sequence tr, PE_, _, PPC, tw, PPR, and tr is

a node circuit in the ATAMM node marked graph model of Figure i.2.

One such node circuit in the CMS of Figure 1.3 is shown in Figure

2.3 (a). This is the node circuit of transition 1 in the AMG of Figure

I.i. Node circuits always have one token, as described in the

Appendix.
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Node

circuit

NMG of transition 1

(a)

Transition 2 Transition .3

(b)

Figure 2.3. Example of node and process

circuits.
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Definition 2.12: Proces_ Circuit. This is a directed circuit in the

which is formed each time an NMG or source is linked to another

NM_ or sink. The backward directed place frcm successor read or sink

transition to predecessor read or source transition, along with

forward directed places from predecessor to successor create the

process circuit.

A process circuit of Figure i. 3 is shown in Figure 2.3 (b). This

process circuit is formed when node marked graphs of transition 2 and

3 are linked. Process circuits always have one token as described in

the Appendix.

Definition 2.13: Parallel Path circuit. This is a directed circuit

in the CMG which is created by any two parallel paths in the AMG. The

circuit is formed by the forward directed places through the NMS'S of

one directed path and backward directed plaees from the successor read

to the predecessor read transition from the NM_'s of the other

directed path.

To illustrate, the f_G of Figure 2.2 is shown in Figure 2.4. The

parallel paths of the AMG form parallel path circuits in the _G. One

such parallel path circuit is shown in Figure 2.5(a). This circuit is

created by two parallel paths in the Figure 2.2 between transition 1

and transition 5.

Definition 2.14: Recursion circuit. This is a circuit in the

which is created due to a directed circuit in the algorithm marked

graph.

To illustrate, the recursion circuit of Figure 1.3 is shown in

Figure 2.5(b). The directed circuit t2, P6, t4, P5, and t2 in Figure

I. 1 translates itself into a recursion circuit in the CMG of
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Figure 1.3. Directed circuits are created in the AM_ mainly due to a

recursion in computation and hence the corresponding circuits in the

C_4G are called recursion circuits.

2.3 Graph Theoretic Perfo_ Bounds

The process of algorithm decomposition imposes bounds on the

amount of parallel concurrency and pipeline concurrency possible in a

given problem. If sufficient computing resources are available,

operation at these bounds can be achieved. In this section, graph

theoretic lower bounds on three performance measures are established

for decomposed algorithms to be operated in ATAMM data flow

architectures. These lower bounds are only a function of the

algorithm marked graph and the node marked graph. Therefore,

performance cannot be improved beyond these bounds by increasing the

number of resources. The remainder of this section is devoted to

developing lower bounds for these performance measures.

Let G denote an algorithm marked graph representing a decomposed

algorithm. The lower bound for TBIO is the shortest time required for

a data token from the data input source to propagate through the graph

to the data output sink. Similarly the lower bound for TT is the

shortest time required to complete all computing activity initiated by

the injection of a data from the input source. These shortest times

are the actual performance times when only a single data set is

present in the graph during any time interval (no pipeline

concurrency), and as many computing resources as are required are

available (maximum parallel concurrency). Under these operating

conditions, lower bounds for TBIO and TP are calculated by identifying
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certain longest paths in a graph obtained from the algorithm marked

graph. This new graph, called the modified algorithm marked graph

GM, is defined and then used to determine lower bounds for TBIO and

_T.

Definition 2.15: Modified Alqorithm Marked Graph. Let Pi be a

place of G, directed from transition tr to transition ts, which

contains a token of the initial marking. The modified algorithm

marked graph GM is obtained from the graph G by the following

construction rules:

i) Place Pi is deleted from G.

2) A new place, Pil, directed from the data input

source to transition ts, is added to G.

3) A new output sink Si different from all other

output sinks, and a new place Pi2, directed frc_

transition tr to Si, are both added to G.

4) The above rules are repeated for each place of G

containing a token of the initial marking.

Example: The recursion problem of Figure I.I is used to generate a

modified algorithm marked graph as shown in Figure 2.6. Only place 5

from transition 4 to 2 has an initial token in the algorithm marked

graph of Figure i.I. According to rule i, place 5 is deleted. A new

place 5-1 is inserted from data input source to transition 2 by rule

2. Rule 3 is then used to generate a new output sink (S5) and a new

place 5-2 as shown in Figure 2.6. As there are no more plaoes with

initial tokens, this completes the procedure to generate a modified

algorithm marked graph.
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Transition 2

\

5-_ 6 Place 4

Figure 2.6. Modified algorithm marked

graph for Figure 1.1.
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Theorem 2.1: Graph Theoretic Lower Bound for TBIO. Let Pi be the

ith directed path in GM from the data input source to the data

output sink, and let T(Pi) denote the sum of transition times for

transitions contained in Pi" Then,

TBIOLB = Max {T(Pi) },

where the maximum is taken over all paths Pi between the data input

source and the data output sink in graph GM.

Proof. T(Pi) is the le/x/th of path Pi; therefore, Max (T(Pi))

is the length of the critical path from the data input source to the

data output sink. From the properties of the critical path [14, 17],

TBIOLB = Max (T(Pi)). This completes the proof.

Theorem 2.2: Lower Hound for TT. Let P i be the ith directed path

in GM from the data input source to any output sink, and let T(Pi)

denote the sum of transition times of transitions contained in Pi"

Then,

TfLB = Max (T(Pi) },

where the maximum is taken over all paths Pi in graph GM.

Proof. By the construction rules for graph GM, a task is initiated

with an input from the data input source, and is completed when all

output sinks have accepted tokens. Therefore, TT is the time which

elapses from injection of input tokens to the arrival of a token at

the last fired output sink. Let T(Pj) = Max (T(Pi)}, among all

Pi in GM" Pj is the longest path among all paths from the
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data input source SI to any output sink. Therefore, Pj is the

critical path amongall paths from the data input source to any output

sink. Hence, by the properties of the critical path [14, 17], TTIB

= T(Pj) = Max{T(Pi) ), where the maximumis over all paths Pi in

GM. This completes the proof.

To illustrate the application of Theorem2.1 and Theorem2.2,

TBIOLBand TTLBare computed for the algorithm marked graph shown

in Figure I.I. For this example, the following transition times are

assumed: T(1) = 4, T(2) = i, T(3) = 5, and T(4) = 6. The modified

algorithm marked graph corresponding to Figure I.i is shown in Figure

2.6. The modified algorithm marked graph contains two paths directed

from the data input source SI to the data output sink S0. Path

Pl is the sequence tl, P2, t2, P3, and t 3 with T(PI) = I0. Path P2

is the sequence t2, P3, and t3 with T(P2) = 6. Since T(PI) > T(P2) ,

path Pl determines the lower bound for TBIO and TBIOLB = I0. The

modified algorithm marked graph contains two additional directed paths

from the data input source SI to the output sink S 5. Path P3 is the

sequence tl, P2, t2, P6, and t 4 with T(P3) = Ii. Path P4 is the

sequence t2, P6, and t 4 with T(P4) = 7. Since T(P3) is the highest,

path P3 determines the lower bound for _T and TTLB = ii.

Next a lower bound for the performance measure TBO may be

determined. Let G be an algorithm marked graph representing a

decomposed algorithm. It is assumed that the operating conditions for

G are set to maximize pipeline concurrency. That is, data tokens are

continuously available at the data input source, and as many computing

resources as needed can be called to perform primitive operations.

The graph G is executed periodically and.TBOLB is the shortest time

possible between successive outputs.
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Theor)_m 2.3: Graph Theoretic Lower Bound for TBO. Let GC be a

computational marked graph and let C i be the ith directed circuit

in GC. The notation T(Ci) denotes the sum of transition times of

transitions contained in Ci, and M(Ci) denotes the number of

tokens contained in Ci. Then,

TBOLB = Max (T(Ci) / M(Ci) ),

where the maximum is taken over all directed circuits in G. The

circuits which determine TBOLB will be called critical circuits of

the C_G.

Proof. Without loss of generality, let tf be the output transition

in G C so that an output is produced each time tf ccmpletes

firing. TBOLB is then the minimum firing period of transition

tf. By consistency property of the Appendix, GC is consistent so

that all transitions of GC fire periodically with minimum period

TBOLB. It is shown in [18] (pp. 58-60) that the minimum firing

period of each transition of a marked graph is given by Max

(T(Ci)/M(Ci)), where the maximum is taken over all directed

circuits C i in G. Therefore, the theorem follows.

The algorithm marked graph shown in Figure i. 3 is used to

illustrate Theorem 2.3. The C_4G contains many directed circuits.

However, the recursion circuit which contains all NMG nodes of

transitions 2 and 4 has only one token and maximizes the ratio

T(Ci) / M(Ci). Therefore, the shortest time possible between

successive outputs in this graph is TBOLB = 7.
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2.4 Resource Requirements

The performance bounds of the last section assumeavailability of

a resource for each transition to fire whenenabled. Therefore, graph

theoretic performance bounds are absolute bounds provided sufficient

resources are available to meet the firing requirements. However, for

insufficient resources, performance cannot reach the graph-theoretic

bounds. The number of resources (R) of an ATAMM data flow

architecture imposes bounds on performance of an algorithm marked

graph. In this section, characteristics of resource usage, maximum

resource requirement, and resource imposed performance bounds are

investigated. Formal definitions of computation, graph execution, and

resource requirements are stated. Definitions and results are

illustrated with examples.

Definition 2.16: TC. Total Computation (TC) is the sum of all

transition times of an algorithm marked graph.

Definition 2.17: TFC. Total Forward Computation (TFC) is the sum of

all transition times that appear in the forward paths from the data

input source to the data output sink of the modified algorithm marked

graph.

Definition 2.18: TBC. Total Backward Computation (TBC) is the sum of

all transition times that do not appear in the forward paths from the

data input source to the data output sink of the modified algorithm

marked graph.

Lemm_ 2. I. TC is the sum of TFC and TBC of an algorithm marked graph.

Proof. With the notation of Definitions 2.16, 2.17, and 2.18,

transitions which oonstitute TFC and TBC are mutually exclusive and

collectively exhmustive of all transitions of the algorithm marked
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graph. Hence, the sumof all transition times of the algorithm marked

graph equals the sumof transition times for both transitions on the

forward paths and not on the forward paths from the data input source

to the data output sink of the modified algorithm marked graph.

Therefore, TC equals the sumof TFC and TBC. This completes the

proof.

Definition 2.19: Computer Time. A unit of Computer Time is defined

to indicate one functional unit available over one unit of time.

To illustrate, if two functional units are used for three units

of time, six units of computer time are used.

Definition 2.20: Computinq Capacity (T). Computing Capacity (CC) is

the total available units of computer time over an interval of time T.

To illustrate, for a time interval of T, the computing capacity

of an ATAMM data flow architecture with R functional units is given by

R * T. Thus CC (T) = R * T.

Definition 2.21: Computinq Effort (T). Computing Effort (CE) is the

total used units of computer time over an interval of time T.

To illustrate, for a time interval of T and R functional units,

let T i be the number of time units the ith functional unit is

used. Then T i * 1 = T i units of computer time is the computing

effort due to the ith resource in interval T. Thus the computing

effort due to R resources is given by

R

CE (T) = 7, (Ti)
i=l

units of computer time.
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Lemma 2.2. For any number of functional units and any interval of

time, computing effort is always less than, or equal to, computing

capacity.

Proof. With the notation of definitions 2.20 and 2.21,

CC (T) = R * T

R

CE (T) = Z (Ti),
i=l

where T i is the number of time units the ith functional unit was

used in time interval T. So T i cannot be more than T [15]. Hence,

CE(T) _< CC(T). This completes the proof.

Definition 2.22: Resource Utilization (T). The Resource Utilization

(RU) of functional units over a time interval T is given by the ratio

of computing effort to computing capacity over that time interval.

Thus,

RU (T) = CE (T) / CC (T).

Lemma 2.3. Resource Utilization (RU) over a time interval T is always

greater than, or equal to, zero but less than, or equal to, I.

Proof. By definition, resource utilization is a ratio of computing

effort to capacity. With the notation of Definitions 2.20 and 2.21,

T i > 0 , T > 0. So CE(T) > 0. CC(T) = R * T > 0 as the ATAMM data

flow architectures must have at least one functional unit. So _J(T) >

0. Also as CE (T) < CC (T), RU (T) < i. This completes the proof.
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Definition 2.23: Total Computinq Effort {TCE). TCE is defined to be

the computing effort required to execute once all transitions of an

algorithm marked graph.

IPmm_ 2.4. TCE equals TC units of computer time.

Proof. With the notation of Definitions 2.16, 2.21, and 2.23,

TCE = CE(T)

R

= Z (T i)
i=I

= TC

units of computer time as total computation to execute all transitions

of the AMG once is TC. This completes the proof.

Definition 2.24: Total Forward ComDutin_ Effort (TFCE). TFCE is

defined to be the computing effort required to execute once all

transitions on forward paths from the data input so_ to the data

output sink of the modified algorithm marked graph.

Lemma 2.5. TFCE equals TFC units of computer time.

Proof. The proof is similar to that of _ 2.4.

With the above definitions and leam_s regarding computation of a

task, it is now intended to establish resource imposed bounds on the

computing time of a task. The following two theorems state the

minimum possible value of TT and TBIO for an ATAMM data flow

architecture of R resources.

Theorem 2.4: Minimum qT for R Resources. The minimum value of TT for

an algorithm marked graph operated with R resources is always greater

than, or equal to, TCE / R.

Proof. T_ is the computing time to complete all computation

associated with a task input. For a time interval of TT, the
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computing capacity of R resources is R * Tr. The total computation

for any task input is the execution of all transitions of the

algorithm marked graph once and hence, equals TC. The corresponding

computing effort is TCE. By Lemma 2.2, R * TT > TCE, or _T> TCE / R

[19]. This completes the proof.

Theorem _. 5; Minimum TBIO for R Resources. The minimum value of TBIO

for an algorithm marked graph operated with R resources is always

greater than, or equal to, TFCE / R.

Proof. TBIO is the computing time to generate data output for a

task. For a time interval of TBIO, the computing capacity of R

resources is given by R * TBIO. In order to generate data output, all

transitions on all the forward paths from the data input source to the

data output sink in the modified algorithm marked graph must be

executed once. The computation involved is TFC and the corresponding

computing effort is TFCE. By Lenm_ 2.2, R * TBIO _> TFCE [19], or

TBIO _> TFCE / R. This completes the proof.

Two graph execution features (SGP and TGP) and two hardware usage

measures (SRE and TRE) are now defined for predicting resourc_

requirements. SGP describes the execution of transitions of the

algorithm marked graph for a single data packet. SRE is the

description of the resource usage to process one data packet. TGP and

TRE are the graph execution description and resource usage envelope

when the algorithm marked graph is executed repeatedly and

periodically.

Definition 2.25: SGP. SGP (single graph play) is a drawing depicting

beginning, duration, and end of execution for each transition of the

task when operated for a single data packet.
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Definition 2.26: TGP. TGP (total graph play) is a drawing depicting

beginning, duration, and end of execution for each transition of each

algorithm input at steady state when the AMG is executed periodically

with an input data injection interval of TBO.

Definition 2.27: SRE. SRE (single resource envelope) is an envelope

of resource usage by a single data packet between the time of

algorithm input and the completion of all computation associated with

that algorithm input.

Definition 2.28: TRE. TRE (total resource envelope) is an envelope

of resource usage to execute the graph at steady state with input

period TBO.

Definition 2,29: Construction of SGP and SRE. SGP and SRE are

generated by firing every transition in the algorithm marked graph at

the earliest possible moment assuming unlimited resources and a single

task input. Graph play is generated by depicting execution of all

transitions in every time interval. Symbols (<, >) are used to show

the beginning and the end of execution for a transition respectively.

The resource usage envelope is obtained by counting the number of

computing resources used during each time interval.

Ex_m_ple. Consider the algorithm marked graph of Figure 2.7.

Transitions i, 2, and 4 have duration of one time unit. Transitions

3, 5, and 6 have duration of two time units. The graph is played

according to Definition 2.29 and the SGP is shown in Figure 2.8(a).

The need for resources is the same as the number of active transitions

in each time interval. The SRE is computed by counting the number of

resources used in each time interval and is shown in Figure 2.8 (b).
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Now suppose the algorithm is executed periodically. Assume that

the input data injection interval is long enough so that every data

packet executes the graph as the SGP and needs resources over the task

time as given by the SRE. As a result, the algorithm is executed with

an input period equal to output period TBO. The total resource

envelope (TRE) is to be determined then by adding the resource needs

of the concurrently p_sed data packets. The total graph play

(TGP) is generated by drawing the execution of transitions from all

the concurrently processed data packets. It is shown in the following

two theorems that TRE and TGP are periodic with period TBO. If SRE

and SGP are divided from the beginning in sections of TBO time units,

these sections are shown to be the contributions from the consecutive

concurrent data packets towards a period of TRE and TGP. AS an

example, SGP and SRE of Figure 2.8, are divided in sections of TBO = 2

time units. Section as well as data packet numbers are represented by

the integer variable b. To illustrate, data packet 2 has been

injected two time units before data packet i. Moreover, transitions 3

and 2 for data packet 0, transitions 5 and 4 for data packet 1 and

transition 6 for data packet 2 are executed concurrently at steady

state requiring a total of five resources. This will be later

illustrated in detail after Theorems 2.6 and 2.7 are developed.

Theorem 2.6. When the algorithm marked graph is operated periodically

for input period TBO with all data packets requiring resource

envelopes identical to SRE, the total resource envelope at steady

state is periodic with period TBO and one period of TRE is generated

by the summation of sections of SRE of width TBO as follows.

Let SRE (x) represent the resource envelope for a single task

input where SRE (x) = 0 for x > TT. Let the origin of time axis (t)
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at steady state be the injection of a data packet.

value of total resource requirement at time t.

concurrently processed data packets at time t.

then given by

let TRE (t) be the

Let b represent the

A period of TRE(t) is

TRE (t) = Z SRE (t + b * TBO),

b

where

0< t<TBO

0 s b < [TT / TBO].

Proof. By the rules of operation, data packets are injected and

outputs are generated at the interval of TBO at steady state.

Consider three consecutive data packets P, Q, and R injected at

t = K * TBO, (K+I) * TBO and (K+2) * TBO respectively, where K is a

positive integer, let d be a time unit in which the total resource

requirement is desired, let s denote the time between d and time for

the previous data packet injection. Suppose d is a time between the

injection of data packets P and Q. Thus K * TBO < t < (K+I) * TBO,

and s = t - (K * TBO). TRE(t) in this interval is made of SRE's due

to data packet P and previous data packets whose computations are

completed after P has started. As all data packets have resource

envelopes identical to SRE of duration T_, any data packet which is

injected Tr or more time before P has no effect on TRE in this

interval. Consequently, the total number of concurrently processed

data sets creating TRE(t) in this interval is given by rTT / TBO].



46

Hence, let the range of b be 0 < b < [TT / TBO] ; b is an

integer. TRE(t) for time interval between P and Q is then the

s_mmation of the resource requirements for these concurrently

processed data packets. Let b = 0 identify task input P whose

contribution to TRE (t) is SRE (s). The data packet which has started

TBO time units before P will contribute SRE (s + TBO) and is

identified by b = i. In general, a data packet which is injected

b * TBO time units before P is identified by the data packet number b

and contributes SRE (s + b * TBO) to TRE (t). Therefore, sunTning SRE

(s + b * TBO) over the entire range of b for the concurrently

processed data packets will give the corresponding TRE (t). The data

packet corresponding to the largest b may contribute to TRE(t) for

only a partial interval. As SRE (x) = 0 for x _> qT,

SRE (s + b * TBO) properly represents the contribution due to the data

packet corresponding to the largest b. Therefore, TRE (t) at d

between P and Q is given by the following equation,

TRE (t) = 7. SRE

b

(s + b * TBO)

= 7_ SRE (t - K * TBO + b * TBO) (2.4.1)

b

where

K * TBO < t < (K +i)

0 _< b < [TT/TBO] .

*TBO

Now let d be a time unit t + TBO from the origin. As d now is a time

unit between data packet injection Q and R, s = (t+TBO) - (K+I)*TBO.
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TRE (t + TBO) = Z SRE (s + b * TBO)
b

= Z SRE ((t+TBO) - (K+I)*TBO + b * TBO)
b

= Z SRE (t - K*TBO + b*TBO)
b

= TRE (t),

from equation (2.4.1). Thus, TRE(t) is periodic with period TBO.

Hence, it is sufficient to specify TRE (t) for one period only; let s

= t, or K = 0. Modifying equation (2.4.1) we get,

where

TRE(t) = Z SRE (t + b * TBO)
b

0<t<TBO

0 < b < [TT/TBO] .

Thus, one period of TRE(t) is generated by the summation of the

sections of SRE (x) of width TBO, starting from x = 0. The sections

are identified by the corresponding value of b. This completes the

proof.

Theorem 2.7. When the algorithm marked graph is operated periodically

for input period TBO with all data packets executing the AMG as SGP,

total graph play at steady state is periodic with period TBO and one
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period of TGPis generated by the overlapping of sections of SGPof

width TBOas follows.

Let SGP(x) represent the graph play for a single task input

where 0 < x < T_. Let the origin of time axis (t) at steady state be

the injection of a data packet. Let TGP(t) be the total graph play

at time t. Let b represent the concurrently processed data packets at

time t. A period of TGP (t) is then given by,

where

TGP(t) = Z SGP (t + b * TBO)
b

0<t<TBO

0 < b < [TT / TBO].

Proof. The proof is similar to Theorem 2.6 with one exception.

Unlike SRE, sections of SGP of width TBO represent portions of graph

play for successive data packets which overlap to form TGP at steady

state. Hence, instead of adding sections of SGP, one period of TGP

should be constructed by overlapping sections of SGP with each section

being identified separately by the value of b. If two values of b are

i and i+l, it means data packet i+l is injected TBO time units before

data packet i. This completes the proof.

Example. One period of TGP and TRE is constructed for the AMG of

Figure 2.7 according to Theorem 2.6 and 2.7 with an input period TBO

of two time units. SGP and SRE of Figure 2.8 are divided in sections

of width two time units as shown in Figure 2.8 by the dotted
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lines. Figure 2.9 shows the TGPand TREfor input period TBOof 2.

Time t is any time when a new data packet is injected at steady

state. In the TGP, the superscript of transitions indicate the value

of b (data packet number). Data packet 1 is injected TBOtime units

before data packet 0. 1(0) and 5 (1) represent the execution of

transition 1 and 5 for the data packet 0 and 1 respectively in Figure

2.9(a). The TGP indicates that 5 (1) begins after the completion of

1 (0) . As in SGP, (<, >) arrow symbols indicate the beginning and

end for execution of a transition respectively. In Figure 2.9(a),

transitions 3 (0) , 5 (1) , and 6 (2) have started in this period but

did not end. Similarly 3 (1) , 5 (2) , and 6 (3) have been completed

in this period but did not start in it. The resource usage in the

four sections of SRE in order of increasing b are (I, 2), (i, 2),

(i, I), and (I, 0). One period of TRE is calculated by adding the

four sections of SRE. The total resource need in one period of TRE is

(4, 5) as shown in Figure 2.9(b). It is to be noted that TRE could

also have been calculated from TGP by counting the number of active

transitions in each time interval.

2.6. Computing effort in one period of TRE is TCE at steady

state when the algorithm marked graph is operated periodically with an

input period of TBO.

Proof. As the algorithm marked graph is operated periodically,

computing effort in every period is the same. Computing effort in a

period TBO of TRE will equal TCE as one task output is generated in

every TBO time units. This completes the proof.

Iemma 2.7. Resource Utilization (RU) in one period (TBO) of TRE is

given by (TCE / (R * TBO)}.
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Proof. By Leam_ 2.6, computing effort in one period (TBO) of TRE is

TCE. Computing capacity in the TBO time interval is R * TBO. By

definition then, resource utilization is {TCE /(R * TBO)). This

completes the proof.

Example. Consider the SRE as shown in Figure 2.10(a) with TT = 7, TC

= 15 (ignore the dotted lines). The peak of SRE is 4 which indicates

that the ATAMM data flow architecture requires at least four

functional units to process the task according to the SRE in seven

time units, let TBO = 3. Tasks are initiated and outputs are

generated at the interval of three time units with all having

identical SRE at steady state. TRE is calculated from Theorem 2.6.

Dividing SRE from the beginning in sections of width TBO, as in Figure

2.10(a), with the dotted lines, (I, i, 2), (4, 3, 3), and

(i, 0, 0) are the contributions of three overlapping task inputs to a

period of TRE. Adding three sections of SRE, a period of TRE is given

by (6, 4, 5) and is shown in Figure 2.10(b). The computing effort in

three time units of TRE is 15 as claimed by Lemma 2.6. Since the peak

of TRE is 6, a minimum of six functional units is required to operate

an algorithm marked graph with SRE of Figure 2. i0 (a) and TBO = 3. By

leamm 2.7, resource utilization (RU)

by {15 / (6 * 3)) = .833.

With the help of above lemmas,

for six functional units is given

the resource imposed bound on TBO

is established in the following theorem.

Theorem 2.8: Minimum TBO for R Resources. The minimum value of TBO

for an algorithm marked graph operated periodically with R resources

is always greater than, or equal to, TCE / R.

Proof. By Theorem 2.6, the total resource envelope is periodic. By

Lemma 2.6, the computing effort needed in period TBO is TCE. The
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computing capacity for time interval of TBO is R * TBO. By Lemma 2.2,

R * TBO > TCE. Hence, TBO > TCE / R. This completes the proof.

Corollary 2.8.1. The minimum value of resource requirements (R) for a

desired TBO is bounded by [TCE / TBO] when the graph is

operating periodically at steady state.

Proof. As TBO > TCE / R, it follows that R> TCE / TBO. Since R is

an integer, R > [TCE / TBO]. This completes the proof.

Example. Consider the algorithm marked graph of Figure I. 1 and the

corresponding modified algorithm marked graph of Figure 2.6. Let T(1)

= 4, T(2) = i, T(3) = 5, and T(4) = 6. The sum of all transition

times are 16. Hence, TC = 16. TFC and TBC are calculated from the

modified algorithm marked graph. Transitions i, 2, and 3 appear in

the forward paths from S I to SO . Therefore, TFC = T(1) + T(2) +

T(3) = i0. As only transition 4 does not appear in any of the forward

paths from data input source to data output sink, TBC = T(4) = 6.

Also, TFC and TBC add up to TC. If only two functional units are

available, the minimum values of T9, TBIO, and TBO are 8, 5, and 8

respectively. For a TBO of 7, the minimum R is [TCE / TBO] = 3.

2.5 Summary

The computing environment and performance measures in the ATAMM

data flow architecture are established. Graph time performance is

expressed by time between input and output (TBIO), task time (TT), and

time between outputs (TBO). The modified algorithm marked graph is

defined to compute lower bounds for qT and TBIO. Lower bounds for the

performance measures are calculated analytically from the modified

algorithm marked graph and the computational marked graph with the
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assumption that a functional unit is available for every enabled

transition to fire. The availability of a limited number of

functional units is then considered. The modified algorithm marked

graph is used to distinguish between forward computation (TFC) and

backward computation (TBC) and to establish their relation to total

computation (TC). Computing capacity, computing effort, and resource

utilization are defined. The range of values for performance measures

are established assuming that the ATAMM data flow architecture has

only R functional units. The algorithm marked graph execution for a

single task input or data packets periodically are defined in terms of

SGP and TGP. The requirements of functional units to process a single

task input or data packets periodically are expressed by SRE and TRE.

Resource utilization is defined; construction rule for SGP and SRE are

defined; and properties of TRE are described. Methodologies for

generating TRE and TGP are established. All definitions and results

are illustrated with examples.



C_APTERTHREE

ALGORITHMTRANSFORMATION

3.0 Introduction

The lower bounds for performance measures of an algorithm marked

graph are developed in Chapter Two. Oneof the two remaining

important problems concerning performance measures is considered in

Chapter Three. Of interest is the potential of transforming an

algorithm marked graph, with or without d_ition, in order to

decrease lower bounds for performance. Investigation is also carried

out to use transformations to reduce resource requirements, enforce

periodicity in execution, and provide structural changes in the

algorithm marked graph. All required transformation techniques,

including an investigation of their usefulness and limitations, are

described in this chapter. Algorithm transformation techniques are

defined and elaborated in Section 3.1. Applications of algorithm

transformations for performance improvements and reduction of resource

requirements are discussed in Section 3.2. A steady state periodic

execution of algorithm marked graphs is realized in Section 3.3.

Structural changes of algorithm marked graphs are considered in

Section 3.4. A sunmary of the chapter is presented in Section 3.5.

3.1 Algorithm Transformation Guidelines

The aim of this section is to define algorithm transformation

techniques and illustrate their significance. Algorithm

55
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transformation is defined to be a process to change some features of

an algorithm marked graph while preserving its equivalence in

computations. In other words, algorithm transformations produce a new

AMGwhich is equivalent to the original AMGbut better in some

respect. The primary objectives are to improve time performance and

lower resource requirements through algorithm transformation.

Therefore, algorithm transformation techniques which can lower

critical path ler_, lower time per token for the critical circuit of

the CMG, lower resource requirements, and enforce periodicity in the

execution of the AM_ are of great interest. A formal definition of

equivalency of two algorithm marked graphs and algorithm

transformation techniques are stated and explained below.

Definition 3.1: Equivalency Of TWo Alqorithm Marked Graphs. Two

algorithm marked graphs are equivalent if they map any set of input

variables into the same set of output variables and produce an

identical output sequence for an input sequence.

Definition 3.1 specifies the allowable transformations. An

algorithm marked graph can be transformed as long as the new AMG is

input-output equivalent with the old one. It is to be noted that if

the computations of transitions and data dependency among the

transitions of the original AMG are not altered, the transformed AMG

will remain input-output equivalent with the original AMG.

Definitions 3.2 through 3.5 describe four transformation techniques

which are based on this observation.

Definition 3.2: Control Place. A control place is any place in the

algorithm marked graph whose deletion generates an equivalent

algorithm marked graph.
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A control place is an artificial place in the sense it is not

necessary for the correctness of an algorithm. A control place

imposes a precedence relation amongtwo transitions. The control

place needs to be initialized by an initial token if it creates a

circuit in the algorithm marked graph. The designer inserts a control

place in the algorithm marked graph to delay the firing of a

transition. All places in the AMG other than control places will be

called active places henceforth. If broadcasting is used to transmit

data between transitions, insertions of control places are not going

to change read and write times of transitions. Also, control places

need not transmit data vectors; therefore they can be implemented at

very low coa_unication cost. Thus for analyses purposes, insertion of

control places in an AM_ will be assumed not to increase read and

write times of transitions.

Definition 3.3: Durmmf Transition. A dummy transition is any

transition in the algorithm marked graph which is not required for

executing a primitive operation.

A dummy transition is a redundant transition in the sense that it

is not required for computation. However, it can be used to control

operation or improve performance. All transitions other than dummy

transitions will be called active transitions henceforth. A dummy

transition can act as a buffer to provide storage for the output of

any transition. Such buffers will be shown to be needed at times when

the algorithm marked graph is operated periodically. A dummy

transition can be used to comb_ input or output data vectors in

order to create single input or output vectors respectively. Another

application of a dunmy transition is as a delay operator for holding
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firing of one, or a group of, transitions. Read and write time for

the NMGof a dummytransition depend on implementation and data

length, but should be less, or equal to, read or write times of an

active transition of equal data length respectively. A dummy

transition has zero process time when it is used as a buffer; it has a

very small process time when it is used for combining data vectors. A

dummytransition as a delay operator has a process time corresponding

to the amount of delay needed. As operations are restricted to large-

grain algorithms, read and write times are expected to be

significantly smaller than the process time of an active transition.

Thus for analyses purposes, a dummytransition will be assumedto have

zero time when it is used as a buffer or for combining data vectors.

Also, it will be assumedthat a du_y transition for applications

other than a delay operator does not require a resource because a

resource is required to implement such a dummytransition for a very

short time. A dummytransition for delay application has not been

explored in detail in this dissertation, but poses an interesting

topic for future research.

Definition 3.4: Predefined Token. A predefined token is any initial

token on a place of the algorithm marked graph.

A predefined token indicates the presence of precomputed initial

data or initial control. A predefined token is necessary at times for

execution of the task and for forward flow of data.

Definition 3.5: Decomposition of a Transition. Decomposition of a

transition in the AMG is to replace the transition by an equivalent

marked graph of a group of transitions.

The transition decomposition of Definition 3.5 is to distribute

the computation of a transition among a group of transitions in order
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to reduce the original transition time. This is important because

large transition times are major contributors to critical path length

and time per token of critical circuits. It should also be noted that

the d_sitions of transitions are not always reasonable or

possible due to added _ication cost, higher resource

requirements, and transition characteristics. Serial, or a

combination of serial and parallel, decompositions of a transition

tends to decrease TBOLBsignificantly while TBIOLBdoes not

improve muchand can even increase due to added serial communication

time. In those cases, a proper deccmposition is dependent upon the

relative importance of TBOand TBIO. Pure parallel decomposition of

transitions decreases both TBOIBand TBIOIB.

Subsequent sections of this chapter will develop a theoretical

basis for the applications of control places, dummytransitions,

initial token and deconposition. A software program, called Ttime

[20], will be used for determining lower bounds for TBO, TT, and

TBIO. This program constructs the C_Gfrom the specified AM_to

determine TBOLB. Twoexamples are presented to illustrate the

transformation of an AS_ through the use of control places and dummy

transitions.

Example. Consider the algorithm marked graph of Figure 2.2. The

corresponding CMG is shown in Figure 2.4. A transformed AMG and

corresponding C_G are shown in Figures 3.1 and 3.2 respectively. A

durm_ transition of zero time is used as a buffer between transitions

1 and 6. The AMG's of Figures 2.2 and 3.1 are equivalent as they

produce the same output sequence for identical input sequences. The

dummy transition provides an additional storage space for the output
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of transition i, which is to be used as an input of transition 6.

Without this dummy transition, transition 1 can fire only once before

transition 6 fires; however, with the dummy transition, transition 1

can fire again before transition 6 fires. Application of this

transformation will be described later.

An example of transformation by control places is shown in

Figures 3.3 and 3.5. Control places delay firing of selective

transitions and therefore modify SRE and TRE. The dummy transition is

used again as a buffer. Improvement due to this transformation will

be described later.

3.2 Perforrmance Improvements by Transformation

Applications of dummy transitions and control places for

improving time performance and reduction of resource requirements are

discussed in this section. New results are stated in Application 1

and 2. Application 1 describes how dummy transitions can reduce

TBOLB of an AMG to the largest time/token among the process and

recursion circuits. Application 2 describes how the SRE of an AMG can

be modified to give a lower peak TRE through the use of control

places.

Application i. This is an application where a dummy transition is

used as a buffer. A dummy transition can provide storage space for

the output of a transition. This can increase the firing rate of

transitions as ATAMM does not allow firing of an active transition

unless its outputs are read by successor transitions. In terms of the

C_4G, a dummy transition can increase the number of tokens in the

circuits of a CMG created by parallel paths in the AMG. This is the

basis for Theorem 3. i.
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Theorem 3.1: Reduction of _ to the Iarqest Time Per Token Amonq

the Process and Recursion Circuits by Dummy Transition. Any AMG can

be transformed by using dummy transitions as buffers so that

TBOIB = Max (T(Ci)/M(C i) ) (3.2.1)

where T(Ci) and M(Ci) denote the sum of transition times and the

number of tokens contained in C i of the C_KZ respectively. Circuit

C i is a process or recursion circuit.

Proof. There are four kinds of circuits in a C_G, as mentioned in

Section 2.2. They are node circuits, process circuits, recursion

circuits, and parallel path circuits. Theorem 2.3 has proved equation

(3.2. I) when C i is any directed circuit of the C_G. From ATAMM

model characteristics, as described in the Appendix, both node and

process circuits always have only one token. Also the sum of

transition times for process circuits are always greater than, or

equal to, that of their corresponding node circuits as process

circuits include the successor read transition. Consequently, the

largest time/token ratio of process circuits is always greater than,

or equal to, the largest time/token ratio of node circuits. The

remaining task is to show that the time/token ratio for circuits in a

C_4G due to parallel paths in the AMG can be reduced sufficiently to

make them insignificant in determining TBOLB. Consider any two

parallel paths Pi and Pj of the AMG which begin and end at

transitions S and E respectively. Consider the parallel path circuit

in the CMG created by forward directed places (for data flow) from NMG
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transitions of path Pi and backward directed places (for control

flow) from NMG'sof path Pj. Each of these backward directed places

has a token in the initial marking. The numberof such backward

directed places are one more than the number of transitions on path

Pj, excluding transitions S and E. Inserting a dummy transition of

zero time on path Pj will increase the number of tokens in this

circuit by one. As this dummy transition does not have any time, it

cannot increase the T(Ci) of this circuit or any other. Hence, the

time/token ratio of this circuit will decrease while not increasing

the time/token ratio of any other circuit. By inserting more dunm_

transitions on path Pj, the time/token ratio for this circuit can be

arbitrarily reduced. If the time/token ratio for this circuit is

greater than the largest time/token ratio from process or recursion

circuits, dum_my transitions can be used to reduce the time/token ratio

to a value lower than, or equal to, the largest time/token ratio among

process or recursion circuits without increasing the time/token ratio

of any other circuit. Following this procedure, sufficient dunm_

transitions may be added so that the time/token ratio for any parallel

path circuit in the (_4G is smaller than, or equal to, the largest

time/token ratio among process or recursion circuits. The procedure

is guaranteed to terminate as dummy transitions, when used as buffers,

never increase the time/token ratio of any circuit. This completes

the proof.

Example. Consider again the AMG of Figure 2.2. The corresponding C_S

is drawn in Figure 2.4 assla_g zero time for read and write

transitions. Therefore, TBOLB is 3. There is no r_ion circuit

in the AMG. The largest time/token ratio among all process circuits
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is 2 and the largest time/token ratio amongnode circuits is 2.

However, the largest time/token ratio amongall directed circuits is 3

due to two parallel path circuits as shown in Figure 2.4. For both of

these circuits, parallel paths in the AMGstart and end in transitions

1 and 5 respectively. Let t i denote transition i and pj denote

place j. Path Pj for both circuits is the forward path tl, P6,

t6, P8, and t 5. Path Pi for the two parallel path circuits are tl, P2,

t2, P3, t3, P4, t4, P5, and t5, and tl, P2, t2, P7, t7, P9, t4, P5,

and t 5 respectively. Both of these circuits have two tokens from

backward directed places from the NMG transitions of path Pj, as

shown in the C_3. Now the AMG is transformed by inserting a dummy

transition on path Pj as shown in Figure 3.1. The corresponding (Y_

is shown in Figure 3.2. The number of tokens on the parallel circuits

are now 3 and therefore the time/token ratio is 2. Time/token ratio

for any other circuit does not increase as the dummy transition has

zero time. The largest time/token ratio over all directed circuits is

now 2. However, TBDiB for the AMG of Figure 3.1 is 2, and

transformation by a dungy transition has improved throughput

performance.

Application 2. This is an application to demonstrate a procedure for

reducing resource requirements. Control places and dummy transitions

are the two transformation techniques which are used. Suppose tbmt

all the data sets of an AMG require a resource envelope, as given by

SRE, and data sets are injected at the interval of TBO time units.

The total resource envelope will then be given by TRE and the peak

value of TRE will be the required number of functional units. From

Chapter Two, TRE is periodic and one period of TRE is made by
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additions of sections of SREof width TBO. This immediately leads to

the possibility that the peak value of TREmight be lowered by

adjusting the shape of SREif the peak value of TREis more than the

minimumrequirement [TCE/TBO]. SRE can be modified by

delaying active transitions selectively with the help of control

places. This mayor maynot lead to an increase in TrLB (thereby

duration of SRE)or TBIOLBdepending on the "float" of delayed

active transitions. Float is the amount of time an active transition

can be delayed without increasing TBIOLB and qTLB.

A desired result is to modify SRE without increasing TBIOLB and

TTLB to achieve TBOLB with a minimum number of resources.

Unfortunately, this problem is equivalent to a class of scheduling

problems which is known to be NP complete [12]. Thus, SRE must be

modified heuristically by control places. Judicious insertion of

control places may reduce the resource requirement for the same

T_IB, but perhaps at the expense of TBIOLB. A control place is

useful if it can reduce resource requirements by delaying transitions

with float or by sacrificing parallel concurrency to some extent.

Lastly, insertion of control places in the AF_ can create dominant

parallel path circuits in the corresponding C_4G which are made

insignificant following the procedure of Application I.

The methodology for lowering the resource requirement is now

stated. First, construct SRE and TRE for the AMG at specified TBO.

The peak value of TRE is the resource requirement for an input data

injection interval of TBO. If the _ value of TRE is more than

FTCE/TBO], heuristically modify SRE by transforming

the AMG with control places with as small an increase in TBIOLB and
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TTLBas possible. Makeall dominant parallel path circuits created

by control places insignificant by adding dummytransitions. An

example is given below to illustrate Application 2.

Example. Consider the algorithm marked graph of Figure 3.3. Frc_ the

AMG,TCE= 12, TBOLB= 2, and TBIOLB= TrLB = 6. The minimum

resources to achieve TBOLBare [TCE / TBOLB ] = 6. SRE is shown

in Figure 3.4. Adding sections of SRE of width TBOLB , a period of

TRE is computed and is shown in Figure 3.4. The peak value of TRE is

9. Hence, nine functional units are required for implementing this

AMG for optimum time performance. As the minimum resource requirement

for TBOLB is 6, Application 2 is considered. The AMG is transformed

heuristically, as shown in Figure 3.5. The dotted lines are control

places 1 through 4. Ignore control places 2, 3, and 4 initially. The

justification of control place 1 is as follows. It is noted that

transition 5 is the only transition which has a float in the AMG.

Transition 5 can be delayed up to two time units without delaying the

output. Considering section 1 of SRE as shown in Figure 3.4,

transition 5 should be delayed one time unit so that the peak value of

TRE is reduced to 8. This is accomplished by control place i. The

modified SRE and TRE are shown in Figure 3.6. Unfortunately, control

place 1 creates a parallel path circuit among transitions i, 4, and 5

whose time/token ratio is more than 2. The time/token ratio of this

circuit is made less than 2 by inserting a dummy transition on the

place between transition 1 and 5. Now consider section 2 of SRE as

shown in Figure 3.6. It contributes (4, i) to a period of TRE. In

order to reduce the peak value of TRE, a more equal distribution of

transitions among the time intervals (t, t+l) and (t+l, t+2) of TRE
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is needed. Control places 2, 3, and 4 do this job at the expense of

increasing TBIOIB and TgLB by one time unit. The SRE and TRE of

the fully transformed _ of Figure 3.5 are shown in Figure 3.7. Now

only six functional units are required, which is the minimum for a

TB01B of 2. It is to be noted that the maximum utilization of

resources may not be achievable by use of control places in all cases

unless the AMG is turned into a complete chain.

3.3 Implementation Of Periodicity By Transformation

This section describes a procedure for enforcing periodicity in

the execution of an algorithm marked graph for successive data sets.

It is desired that performance and resource needs be identical for all

data sets for two reasons. First, input data should not experience a

waiting time on the critical path of a task so that TBIOLB is

achieved for all data sets. Second, the resource envelopes for all

data sets should be identical so that the total resource need can be

predicted. It will be shown in Application 3 and 4 of this section

that by controlling input data injection and transforming the AMG by

dummy transitions, periodicity can be realized in the execution of the

AMG. The need and methodology for injection control of input data is

explained in Application 3. Application 4 describes the conditions

for operating an AMG periodically with each data packet having

identical resource envelopes.

Application 3. When presented with continuously available input data

sets, the natural behavior of a data flow architecture results in

operation where new data sets are accepted as rapidly as the available

resources and the input transition of the AM_ permits. From C_apter
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Two, the output of the AMG cannot be generated at a higher rate than

I/TBOLB or R/TCE. Therefore, if the data sets are continuously

available, they experience a waiting time inside the architecture

which increases TBIO from TBIOI_. That is, the architecture will

naturally operate at high levels of p_peline concurrency with the

possible loss of capability for achieving high levels of parallel

concurrency. This will result in performance characterized by high

throughput rates, but relatively poor task computing speed. In many

control and signal p_sing applications, it is important to achieve

both a high throughput rate and high task computing speeds.

Therefore, it is necessary to control injection rate of data sets so

that input data never waits on the critical path. The input data

injection interval must always be greater than, or equal to, TBOLB

and it should be such that all task inputs always have a resource

available to fire transitions on the critical path to the data output

sink. This can be accomplished by either adjusting the time for the

source transition or as shown in Figure 3.8. It is not always easy to

adjust the source transition time as this will be the sampling

interval of sensors in a real system. All that is required is to

limit the rate at which new input data are presented to the C_G. This

is done in Figure 3.8 by adding a dummy transition in a directed

circuit with the data input source. The predefined token on the

directed circuit is for initialization. The dummy transition imposes

a minimum delay of D time units between inputs. D is chosen to be the

designer specified TBO.

Application 4. It is necessary that all data sets have the same

resource envelope so that the total resource requirement can be
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predicted. Also at steady state, it is desirable that all data sets

require resource envelopes identical to SRE as SRE can be modified to

lower the peak value of TRE as described in Application 2. In order

to achieve such a resource envelope, all transitions of the AMG should

fire as soon as there is a token on every input place. The first step

is to control the data injection interval as discussed in Application

3. If this condition is satisfied, then it can be guaranteed that a

data token never waits on the critical path from the data input source

to the data output sink for all data sets. Hence, TBIOLB is

achieved for all data sets. Secondly, the resource envelope for a

data set of an AM_ at steady state may not be identical to the SRE

even though injection is controlled for the following reason.

Whenever there are parallel paths in the algorithm marked graph, the

transitions on non-critical paths of the algorithm marked graph will

have a float associated with them. The float of a transition is the

time by which a transition can be delayed without increasing TBIOLB

and qTLB. If there is not enough storage space for previous data,

transitions in the AM_ with float may not fire even though all the

input places have tokens. The reason is that one or more output

places of the transition contain previous data. This will change the

steady state resource envelope from the SRE. One way to prevent this

frc_ happening is to use control places to eliminate all floats from

the AMG. However, this may not be always possible as any control

place has to be generated from the completion of execution for a

transition. Also, use of control places may require dummy transitions

to prevent T_3IB from increasing, which will make the AM_ more

complex. A better way of enforcing SRE for all data sets
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is to use dunmytransitions as buffers in the output of transitions

with float which need more storage space for previous data. The

position and number of dummy transitions can be determined from TGP

based on SGP. As the input injection interval is greater than, or

equal to, TBOLB , SRE should be enforced for the injection interval

of TBOLB. This will also guarantee SRE for all data sets with any

higher injection interval. The reason is that transitions are

executed at a lower rate for a higher injection interval and the need

for storage space at the output of floating transitions will be

lower. The detailed procedure is now stated below.

Construct the TGP based on SRE for TBO = T_LB. Locate all

transitions with float and identify their corresponding task input

number. By inspection of TGP, check whether all the successors of a

floating transition for the previous task inputs have fired before the

floating transition fires. If not, the floating transition needs

dummy transitions as buffers at its output. The number of required

dummy transitions equals the number of previous task inputs for which

at least one of the successor transitions has not fired at the time of

firing of the floating transition.

Example. Consider the algorithm marked graph of Figure 3.9. From the

AMG, TBOLB = 2 and TBIOLB = T_LB = 5. Only transition 5 has a

float of two time units. SGP and TGP for TBO = TBOLB = 2 are shown

in Figure 3.10. Task input 1 has started THOLB before task input 0,

and task input 2 has started another TBOLB before task input i. The

successor of floating transition 5 is transition 4. Another

predecessor of transition 4 is transition 3. Notice from the TGP that

4 (2) has started before 5(0); 3 (1) begins with 5 (0) . As 4 (1) is
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executed after 3 (I) in the SGP, 4 (1) has not started before

5 (0) . Hence, one dummy transition is needed at the output of

transition 5 to store 5 (1) so that 5 (0) can fire according to the

SGP. Otherwise, the firing of 5 (0) will be delayed as the NMG model

of a transition does not allow the firing of a transition unless the

output buffer is empty. The transformed A_3 is shown in Figure

3.11(a). The TGP for TBO = 3 is shown in Figure 3.11(b). Transition

5 no longer needs a dummy transition in the output for enforcing SRE.

Hence, the transformed AMG of Figure 3.11(a) enforces SRE for TBO

equal to both 2 and 3.

3.4 Structural Changes In Algorithm by Transformation

The transformations considered so far try to preserve the

original structure of an algorithm marked graph. In certain

conditions that may not be possible, or desirable. For example, it is

possible to improve TBOLB of linear time invariant systems by

modifying the state equations, in this section, three kinds of

structural changes of algorithms are considered in Application 5

through 7. Application 5 explains how multiple input-output

algorithms or a group of algorithms can be combined into a single

input-output algorithm. This is necessary because the analysis tools

developed in this dissertation are based on single input-output

algorithms. Improvement of throughput by modifying the state

equations of linear time-invariant systems is demonstrated in

Application 6. The linearity property of state equations is used in

developing this technique and hence may not be applicable for other

graphs, in general. Application 7 considers the parallel

deconposition of transitions as a way of improving performance.
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_pplication 5. The perfornkmnc_ model of Chapter Two considers only

single input and single output algorithms. The addition of dummy

transitions provides a way of converting multiple input-output

algorithms or a number of algorithms into one single input-output

algorithm. A dunm_ transition is used to combine input data vectors

or output data vectors. All the inputs are synchronized and fed to

the dummy transition at the same rate. Performance is evaluated from

the combined algorithm which represents the total task. Two examples

are shown in Figures 3.12 and 3.13. In Figure 3.12, AMG A 1 has two

inputs and two outputs. It is transformed into a single input-output

algorithm A 2 by dummy transitions. Figure 3.13 shows how dummy

transitions can be used to combine two algorithms into one algorithm.

Application 6. This is an application of increasing throughput of

linear time invariant systems by increasing the number of tokens in

the circuit. Linear time invariant systems are described by the state

equations as stated below.

x(k) = Ax(k-l) + Bu(k)

y(k) = Cx(k) + Du(k) (3.4.1)

where x is the state vector, y is the output vector, and u is the

input vector. A, B, C, and D are time-invariant system matrices. The

corresponding algorithm marked graph is shown in Figure 3.14.

Usually, Ax(k-l) is the most time consuming computation in the AMG.

In such a system, the recursion circuit determines the TBOLB. It is

shown that it is possible to reduce the time/token ratio of this

recursion circuit by doubling the number of tokens so that TBOLB is
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improved to the largest time/token ratio of the process circuits in

the C_4G. This is useful if decomposition is not desirable and TBOLB

needs to be reduced approximately to the largest transition time of

the AMG. The methodology for reducing the time/token ratio of the

recursion circuit is expressed below by the statement and proof of

Theorem 3.2 with the assumption that A * () is the largest transition

in the AF_ representing the state equation.

Theorem 3.2. It is possible to improve TBOLB to the largest

time/token ratio of the process circuits of a linear time invariant

system by reducing the time/token ratio of the recursion circuit by

doubling the number of tokens in the recursion circuit.

Proof. Theorem is proved by construction. Assuming A * ()

(transition 4) to be the largest transition of Figure 3.14, TBOLB is

determined from the recursion circuit. Application 1 has shown that

any AMG can be transformed so that TBOLB is determined by only

process circuits and recursion circuits. Thus, the statement of

Theorem 3.2 will be proved if the AF_ for the state equation can be

transformed so that the time/token ratio of the recursion circuit is

smaller than that of the largest process circuit. Let the state

equation represent a 1-input, m-output, and n-element state vector

system. The dimensions of A, B, C, and D are then (n, n), (n, i),

(m, n), and (m, I) respectively. Now

x(k)

x(k) = Ax(k-l) + Bu(k) ;

x(k-l) = Ax(k-2) + Bu(k-l) ;

= A{Ax(k-2) + Bu(k-l) ) + Bu(k).
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It follows from the linearity of the system that

x(k) = (A * A)x(k-2) + (A * B)u(k-l) + Bu(k).

_t A* A=E andA* B= F. The,

x(k) = Ex(k-2) + Fu(k-l) + Bu(k). (3.4.2)

Notice that the dimension of E and A and F and B are the same.

Therefore, the amount of ocmputation of Ax(k-l) and Ex(k-2) and

Fu(k-l) and Bu(k) are the same. However, if equation (3.4.2) is used

instead of equation (3.4.1) for representing a linear time-invariant

system, the recursion circuit has two initial tokens as x(k) is

get,rated from x (k-2). The new AMG based on equation (3.4.2), and the

original output equation, is shc_n in Figure 3.15. The dunm_

transitions are inserted to act as buffers so that transitions are not

blocked from firing because output buffers are never empty. TI,

T2, and T 3 are predefined tokens. T 1 = F * u(k-l), T2 = E * x(k-2),

and T3 = x(k-l). Let k = i, 2, 3... and the initial state vector be

x(0). Therefore, the first input and output are u(1) and y(1)

respectively. That is, u(s) = 0 for s equal to zero or negative.

Therefore, the initial values of TI, T2, and T 3 correspond to k

= i. Hence, the initial values of T 1 and T 3 are T 1 = F * u(0) =

0 and T 3 = x(0). From (3.4.2),

T2 = Ex(k-2) = x(k) - Fu(k-l) - Bu(k).
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Therefore, the initial value of T 2 is given by x(1) - Fu(0) -

Bu(1). As u(0) = O, the initial value of T2 = x(1) - Bu(1). Hence,

it follows from the equation (3.4.1) that the initial value of T2 =

Ax(0) + Bu(1) - Bu(1) = Ax(0). Therefore, all the initial values of

the predefined tokens can be calculated from the initial state

vector. The recursion circuit now consists of transitions 2 and 4 and

there are two tokens in that circuit. _ne ccmputation level of

transition 4 has not changed, although that of transition 2 has

doubled. Thus, the new time/token ratio of the recursion circuit is

T(4)/2 + T(2), where T(4) and T(2) are the times for transition 4 and

2 of the original algorithm marked graph. Assuming T (4) is much

greater than T(2), the TBOLB of the new algorithm marked graph of

Figure 3.15 is given by the process circuit of transition 4 whose

time/token ratio is the same as in Figure 3.14.

Application 7. This application establishes a method for finding the

maximum level of parallel decomposition of a transition in an AMG for

the best computing speed of the transition. Decomposition reduces

process times of transitions; unfortunately, it also increases the

communication cost due to an increase in number of transitions and

places in the graph. Therefore, computing speed is improved with

decompositions up to a certain level. For the lowest process time,

transitions are decomposed uniformly. The maximum level of

decomposition of the transition is determined from the condition for

the fastest ccmpletion of the computation represented by the original

transition.

Let T be the ccmputation time of a transition which can be

decomposed in parallel arbitrarily without changing T. Let this
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transition be decomposedinto N equal parallel transitions as shown in

Figure 3.16. Each Ti is T/N. The time to complete the total

computation (A) for T in the worst case is then given by

A= r + _N+ C0 + w. (3.4.3)

r and w are the read and write times to complete reading and writing

of data for all T i transitions. When this set of N transitions is

computing T, some other transitions of the AMG may be concurrently

processed. CO is the time required by each functional unit to

receive data from the transitions of the rest of the AMG during the

computing of T. CO is assumed to be independent of N and i. Any

data are assumed to be broadcast to all functional units by a

transmission medium. It is assumed that one data packet can be

broadcasted at a time to all functional units. It is also assumed

that total transmission time for output data for all N transitions

together does not change with N. The worst case value of read and

write time for all N transitions together can then be expressed by the

following equation:

r + w = C1 + N*L*C 2 + C3, (3.4.4)

where C1 is the time that the transmission medium has to be used to

serve the rest of the AMG during the read and write operations for N

transitions of T. C 1 is assumed to be independent of N. C 2 is

the average access time for the transmission medium and L is the

number of times a functional unit has to access the transmission
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medium for computing a transition. C 3 is the time to transmit

output data over the transmission medium for all N transitions

together and is assumed to be independent of N. Therefore, from 3.4.3

and 3.4.4,

A = T/N + CO + C1 + N*L*C 2 + C3 .

For minimizing A, dA/dN = 0; d2A/dN 2 = positive. Now

dA/dN = (- T/N 2) + (L*C 2);

d2A/dN 2 = 2 * (T/N3).

I

As T and N are always positive, d2A/dN 2 is positive.

dA/dN = 0,

0 = (-T/N 2) + (L'C2);

N = [(T / (L*C2))'5]

As N has to be an integer and higher N will mean higher communication

cost,

N = [[{T / (L,C2))'5]J.

Also as N _> 2 for any decomposition,

(3.4.5)

T_ 4 * L * C2. (3.4.6)
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Thus knowing C2, which is an architecture dependent parameter, the

minimumvalue of T for decomposition can be evaluated from (3.4.6).

Equation (3.4.5) provides the maximumlevel of decomposition.

Example. Let T be the processing time for transition B in an AMGas

shown in Figure 3.17. SupposeB can be arbitrarily decomposedin

parallel. Let T = i0, C2 = 0.25 and L = 2. As T > (4*2*.25 = 2), B

can be decomposed to improve performance. Let B be decomposed in N

transitions in parallel. Hence, N > [[{10/(2,.25) ).5]j = 4.

In order to maintain process time for c_r_utation T reasonably higher

than communication time for large granularity, a level of

decomposition, less than or equal to, half the maximum level is

assumed to be appropriate in the following example. Thus N is chosen

to be 2. The decomposed transition B is shown in Figure 3.17.

3.5 Summary

Applications of algorithm transformation are discussed in this

chapter and transformation techniques are defined. Improvements of

TBOLB are achieved by dummy transitions. Resource requirements may

be lowered by control places and dummy transitions. Input data

injection is controlled by predefined token and dummy transition.

Periodicity in the resource envelope is enforced by dummy

transitions. The methodology for transforming algorithms into single

input-output algorithm is described. The TBOIB of linear

time-invariant systems is improved by predefined tokens. Lastly,

parallel decomposition of transitions are considered to illustrate the

trade-off between decreased granularity and increased communication

cost.
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ATAMM OPERATING POINT DESIGN

4.0 Introduction

Tne ATAMM operating point (AOP) describes the specification of

the input data injection interval (latency), resource requirements and

the time performance of an algorithm marked graph operated on an ATAMM

data flc_ architecture. The design of operating points based on the

number of resources of the ATAF_ data flow architecture is

investigated in this chapter. The methodology is demonstrated through

examples, simulations, and experiments. Properties of the ATAMM

operating point under the allowable transformations and implementation

strategies are discussed in Section 4. i. In Section 4.2, AOP design

methodology is developed. Performance model, transformation

techniques and the AOP design methodology are verified by simulations

and experiments on test algorithms in Section 4.3. A _ of the

chapter is presented in Section 4.4.

4.1 Characteristics of Operating Point

The ATAMM operating point is the parameter set (TBI, R, TBIO, _T,

and TBO) for an algorithm execution where TBI is the input data

injection interval (latency) and R is the minimum number of resources

required by the ATAMM data flow architecture. The design problem is

to specify an operating point for executing an AMG in the ATAMM data

flow architecture which achieves optimum time performance with a

95
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minimumnumberof computing resources. Unfortunately, this problem is

equivalent to a class of scheduling problems which is knownto be NP

complete [12]. Thus, there exists no methodology for obtaining an

optimum solution which is better than enumerating all possible

solutions and then choosing the best one. However, it is possible to

develop a procedure for generating sub-optimal solutions. This is the

objective of this chapter. The design objective is to determine an

operating point given the number of resources, and to provide the

guidelines for generating a new operating point should the number of

resources change. Also, the expected time performance for TBIO and TT

should remain the same with any input data injection interval greater

than that of the operating point as long as the number of resources

are not decreased. The following properties are assumed in the

operating point design:

a) Input data from the source are injected into the ATAMM data

flow architecture at a constant rate, and hence the time

between successive inputs (TBI) is always the same.

b) For all input data of the task, TBIO = TBIOLB and _T =

TFLB.

c) Each data set requires a resource usage envelope identical to

SRE.

All of these properties are realized by the use of Applications 3

and 4 of Section 3.3. These properties are needed for achieving the

best task computing speed for all task inputs and to accurately

predict resource requirements. As stated in Application 3, the time

between successive data inputs (TBI) is adjusted to be greater than,

or equal to, TBOLB so that input data never wait on the critical
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path to the data output sink. The algorithm marked graph is

transformed as in Application 4 so that the resource envelope for each

task input is SRE. The design procedure must determine the allowable

range of TBI so that the ATAMMdata flow architecture has sufficient

resources to meet the resource requirements of all task inputs. Let

Rmin be the peak value of SRE. Therefore, any task input requires

at least Rmin resources to meet properties b and c. Let Rmax be

the largest peak value of _ for any TBI > TBOLB. Hence, with

Rmax or more functional units, any ATAMM data flow architecture can

execute the AMG while achieving TPLB and TBIOLB for any injection

interval greater than, or equal to, TBOLB. It is to be noted that

TBI and TBO are the same for any AMG at steady state. Finally, let

the number of resources of the ATA_P4 data flow architecture be denoted

by R.

The operating point for various numbers of resources can be

displayed on a graph of TBO versus TP. Every point in the graph is

associated with a value of TBIO and R. From Chapter Two, TT > TCE/R

and TBO > TCE/R. Also TBI and, hence, TBO need not be increased

beyond qT as Rma x = Rmi n on the TBO = TP line. Therefore, the AOP

is expected to lie in a triangular area of the graph determined by the

number of functional units of the ATAMM data flow architecture. The

characteristics of the operating point are shown in Figure 4. I.

Let the problem be specified by an algorithm marked graph. Let

the best possible performance under the rules of operating point

design be defined as the absolute lower bounds for the time

performance. Formal definitions of the absolute lower bounds for TY,

TBIO, and TBO are now stated.
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Definition 4. i: Absolute Lower Bound for TBIO. The absolute lower

bound for TBIO (TBIOALB) is defined to be the lowest TBIOLB for

the algorithm marked graph with or without any transformations.

Definition 4.2: Absolute Lower Bound for TT. The absolute lower

bound for T_ (TTALB) is defined to be the lowest TFLB for the

algorithm marked graph with or without any transformations.

Definition 4.3: Absolute Lower Bound for TBO. The absolute lower

bound for TBO (TBOALB) is defined to be the lowest TBOLB with or

without any transformations.

Let the transformation be restricted such that only chammy

transitions (of zero time) and control places (with no initial token)

are used for transforming the algorithm marked graph. Theorems are

now described to determine the absolute lower bounds under the above

transformations.

Theorem 4.1. The absolute lower bound for TBIO is equal to the lower

bound without any transformations.

Proof. Control places can create new paths in an algorithm marked

graph but do not alter existing paths in the AM_. Dummy transitions

of zero time increase the number of transitions on a path in the AM_

but do not increase the path length. Therefore, any path in the

original AM3 is also a path in the transformed AMG with equal path

length. The critical path from the data input source to the data

output sink in the MAMG of the original algorithm marked graph is also

a path from the data input source to the data output sink in the MAMG

of the transformed AMG. Hence, TBIOLB of any transformed AMG under

the stated transformations cannot be lower than that of the original

one. Therefore, the TBIOAI B of an algorithm marked graph is
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determined by the TBIOLBof the AD_without any transformations.

This completes the proof.

Theorem 4.2. The absolute lower bound for qT is equal to the lower

bound without any transformations.

Proof. The proof is similar to that of Theorem 4.1. However, TTLB

is determined by the critical path among all paths from the data input

source to any output sink in the MAMG. By the arguments of Theorem

4. i, this critical path in the MAMG of the original AD_ is also

present with equal path length in the MAMG of the transformed AMG.

Thus, TTIB cannot be reduced by transformation with dummy

transitions (zero time) and control places (no initial token). Hence

the T_AI B of an AD_ is determined by the TTLB of the AMG without

any transformations. This completes the proof.

Theorem 4.3. The absolute lower bound for TBO is equal to the largest

time/token ratio an_ng the process and recursion circuits in the

of the original algorithm marked graph without any transformations.

Proof. Theorem 3.1 has proved that the TBOLB of an algorithm marked

graph can be reduced to the largest time/token ratio of the process

and recursion circuits by transforming with dummy transitions of zero

time. Also, the time/token ratio of process and recursion circuits

are not going to increase as long as dummy transitions do not require

computer time. Control places, on the other hand, can create new

parallel path circuits in the C_G but do not change the time/token

ratio value of the circuits in the _ of the original AMG.

Therefore, the lowest TBOLB and TBOAI B is determined by the

largest time/token ratio among the process and recursion circuits in

the C_G of the original AMG. This completes the proof.
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Any operating point will have TBIO, Tr, and TBOvalues greater

than, or equal to, those specified by the respective absolute lower

bounds. Figure 4.2 (a) displays the characteristics of the operating

point when designed with only dummy transitions (zero time) and

control places (no initial token). Any operating point resides in the

area BVWH. The point B corresponds to the operating point which

achieves the absolute lower bounds for TBIO, TT, and TBO. Lines BV

and _H represent operating points which achieve the absolute lower

bounds in task computing speeds (qT and TBIO) and the output interval

(TBO) respectively. With the specified transformations, _TLB cannot

be more than TC. Any operating point on line HW has TTLB = TC,

which indicates the absence of any parallel concurrency. Point W is

characterized by TTLB = TBOIB = TC and represents complete

sequential operation with no concurrency. ATAMM is most appropriate

for problems which require both parallel and pipeline concurrency. It

is assumed that TBIOLB and qTLB are achieved for any TBI greater

than, or equal to, the data injection interval at the operating

point. Therefore, the minimum resource requirement at any operating

point is the greatest peak value of TRE for any TBI > TBOop , where

TBOop is the data output interval and the input data injection

interval at the operating point.

4.2 Operating Point Design

Let the problem be specified by an algorithm marked graph for

which the ATAMM operating point is to be determined. The only

allowable algorithm transformations are dungy transitions of zero time

and control places. Predefined tokens and decomposition will not be
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considered for operating point design. The AOP design consists of six

steps. These steps are described in the remainder of this section.

The operating points are determined corresponding to different number

of resources for the algorithm marked graph of Figure 3.3 to

illustrate each step as it is presented.

Ste_. Construct the CMG from the AMG. Determine lower bounds and

absolute icier bounds for TBIO, Tg, and TB0 for the AM_. If TBOLB

is greater than TBOALB, transform the AMG with dummy transitions to

achieve TBOALB, as in Application 1 of Section 3.2. Determine Rma x

and Rmi n. If Rma x > [TCE/TBOALB] , heuristically transform

the AMG with control places and du_m I transitions to reduce Rma x

without increasing TBIOLB , TTLB , and TBOLB , as in Application 2 of

Section 3.2. Determine new Rma x and Rmi n values. Lower bounds of

performance for the resultant AMG are also the absolute lower bounds

for TT, TBIO, and TBO under the specified transformations.

From the AMG of Figure 3.3, TBIOLB = 6, TTLB = 6, TBOLB = 2.

Also TBIOAL B = 6, TTAL B = 6, and TBOAL B = 2. SRE and TRE

corresponding to TBO = 2 are shown in Figure 3.4. Checking all TBI >

2, Rma x = 9. The AMG of Figure 3.3 is now transformed heuristically

to lower Rma x without increasing TBIOLB , TrLB , and TBOLB , as

described in Application 2 of Section 3.2. The transformed AMG is

shown in Figure 3.5 (ignore control places 2, 3, and 4). SRE and TRE

corresponding to TBI = TBOLB = 2 are shown in Figure 3.6 for the

resultant AMG. By checking all TBI > 2, it is determined that Rma x

= 8, Rmin = 4.
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SteP_2. Choosea convenient transition firing rule. A rule to

determine when an enabled transition in the C5_3fires must be

specified in the graph manager. The rule usually used is that enabled

transitions fire when computing resources are available. If

contention exists, such as when there are more enabled transitions

than computing resources, firing occurs according to a priority

ordering of the transitions. For the algorithm marked graph of Figure

3.5, the highest to lowest priority ordering of the transitions is

chosen as (Ii, I0, 9, 7, 8, 5, 6, 4, 3, 2, 12, and I).

_. If R > Rma x functional units are available, operate at TBI

= TBOAL B. Use Applications 3 and 4 of Section 3.3 to adjust TBI to

TBOAL B and to transform the AMG by dummy transitions in order to

realize SRE as the resource envelope for all task inputs. Eliminate

all unnecessary dummy transitions. The operating point time

performance is the absolute lower bound values for TBIO, qT, and TBO.

The AMG can also be operated for any TBI > TBOAI B while maintaining

TBIO and TT at absolute Icier bound values. When R < Rmax,

determine the operating point from one of the following strategies:

Strategy A: Strategy A is applicable when Rma x > R > Rmi n-

Preserve TBIO and TT at their respective absolute

lower bounds at the expense of increasing TBI and

TBO above TBOAL B.

Strategy B: Strategy B is applicable for the following range of

R. Rma x > R > [TCE/TBOALB]. Preserve TBO

to its absolute lower bound at the expense of

increasing one, or both, of TBIOLB and TrLB.
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Strategy C: Strategy C is applicable whenRmax > R > i. The

operating point is determined by first following

Strategy B so that Rmax > R _>Rmin, and then

increasing TBI above TBOALB. The strategy tries

to minimize performance degradation in TBIO, Tr, and

TBO from their respective absolute lower bound

values.

These three strategies of the AOP design under resource

constraints are illustrated in Figure 4.2(b). Strategy A maintains TT

and TBIO at their respective absolute lower bound values and reduces

pipeline concurrency to lower resource requirements. Strategy B

reduces resource requirements by decreasing parallel concurrency

resulting in a higher lower bounds for one or both of TBIO and _T.

Strategy C sacrifices both pipeline and parallel concurrency to some

extent for lowering resource requirements.

If the ATAMM data flow architecture has eight or m_re functional

units, the algorithm marked graph of Figure 3.5 can be operated at

TBIO = TY = 6 and TBO = 2 by adjusting TBI = 2 using Application 3 of

Section 3.3. SGP and TGP corresponding to TBI = 2 are shown in Figure

4.3 which suggest that no new dtmm_ transitions are required to

enforce SRE and SGP. Resource utilization over a period TB0 is given

by (TCE/(R*TBO)) = 12/16 = .75.

SteD 4. Execute this step if strategy A is appropriate. Increase TBI

to TBOop such that TBOop is the lowest time interval between

overlapping SRE's for the peak value of TRE to be less than, or equal

to R, for all TBI _> TBOop. TBOop is guaranteed to lie in the

range [TCE/R] < TBOop < TTAL B. Operate at TT = TTAL B,
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TBIO = TBIOALB,

Section 3.3.

TBOop-

Assume,

and TBO = TBI = THOop using Application 3 of

TBIOAI B and qTAI B are also achieved for any TBI >

the ATAMM data flow architecture has five functional

units. As Rmi n = 4, Strategy A can be applied. Following Strategy

A, it is found that TBOop = 3. Overlapping of SRE's for TBI = 3 is

shown in Figure 4.4 (a). The operating point is given by TT = TBIO = 6

and TBI = TBO = 3 and RU(TBO) = (12/(5"3)) = .8.

Ste_. Execute this step if Strategy B is appropriate.

Heuristically transform the _ to reduce Rma x using control places,

as in Application 2 of Section 3.2. Maintain TBOLB at TBOAL B by

using dummy transitions. A good heuristic is to reduce Rmi n

significantly. There is a guaranteed solution at T_LB = TC,

TBIOLB = TFC, and TBOLB = TBOAL B by transforming the AMG into a

complete chain. Eliminate all unnecessary dummy transitions. Operate

the transformed AM_ for TBI = TBOAI B = TBO, Tr = qTLB , and TBIO =

TBIOLB using Applications 3 and 4 of Section 3.3.

Suppose the ATAMM data flow architecture has six resources. TCE

= 12 units of computer time. As R > [TCE/TBOALB] = 6,

Strategy B can be applied. Rma x is reduced to 6 by control places

2, 3, and 4 as shown in Figure 3.5. New SRE and TRE for TBI = 2 are

shown in Figure 3.7. The peak value of TRE is 6. _TLB = TBIOLB =

7. By checking all TBI _> 2 for this AFt, it is found that Rma x = 6

and Rmi n = 3. SGP and TGP for the transformed AMG are shown in

Figure 4.5. 0nly transition 5 has a float associated with it. The

successor of transition 5 is transition Ii. By inspection of the TGP,

transition 5 (1) fires before transition 11 (2) , which is impossible
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in an ATAMM unless there is a buffer between transitions 5 and Ii.

Hence one dummy transition is required between transitions 5 and ii as

shown in Figure 4.6 to enforce SRE as the resource envelope for all

task inputs. The operating point is given by TT = TBIO = 7 and TBO =

TBI = 2; RI/(TBO) = i.

Step 6. Execute this step if Strategy C is appropriate. Transform

the AMG by Strategy B until Rma x > R > Rmi n and then increase TBI

to determine THOop , as in Strategy A.

Let R = 4. The AMG is transformed by Strategy B as described in

Step 6. Now Rma x = 6 and Rmi n = 3. As R is within the range of

Rma x and Rmin, the operating point can be determined by increasing

TBI as in Strategy A. Increasing TBI, TBOop = 4. Overlapping of

SRE's and TRE for TBI = 4 are shown in Figure 4.4 (b). The operating

point is given by TT = TBIO = 7 and TBI = 4. Adjust TBI to 4 for the

AMG of Figure 4.6 to implement the operating point. _(TBO) -- .75.

These operating points for the AMG of Figure 3.5 are shown in

Figure 4.7. Operating point B is the only operating point which

achieves the absolute lower bounds for T_, TBIO, and TBO and is

achieved in Step 3. OPA, OPB, and OP C are the operating points

developed by Strategies A, B, and C respectively.

4.3 Test Results

The performance model, transformation techniques, and the ATAMM

operating point design procedures are tested by simulations and

experiments, simulations on the test algorithms are done by a

software simulator developed to simulate the execution of an algorithm

in the ATA2_4 environment [21]. The input parameters for the simulator
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are the algorithm marked graph including all NMG transition times, the

number of resources, and a priority ordering for the transitions of

the AM_. The input data injection interval is controlled by adjusting

the source transition time. The simulator detects and writes all

events associated with the execution of transitions for each task

input on a graph diagnostic file. The analyzer is a program developed

to analyze this graph diagnostic file [21]. The two features of the

analyzer used in this dissertation are the node activity display and

the input/output display. The node activity display shows the

execution of transitions as a function of time. The input/output

display shows TBI, TBO, and TBIO for each task input and also plots

these quantities as a function of time. Detailed information about

the simulator and the analyzer are found in [21]. Another useful

program developed is called Ttime which determines the lower bounds

for T_, TBIO, and TBO in an algorithm marked graph by constructing the

CMG and MAM_ [20].

A testbed is developed to run test algorithms in the ATAMM

environment [20]. The ATAMM data flow architecture consists of three

functioDml units with a distributed global memory and graph manager.

Figure 4.8 shows the architecture. Functional units are realized by

I_M Personal Computer AT's. Functional units co_mmicate between each

other by a ET_hernet communication bus. In addition, another I_M PC/AT

which implements the source and sink transitions of the AMG is

connected on the Ethernet bus. This I_M PC AT is used to begin and

end the execution of the test algorithm and to generate a graph

diagnostic file recording all events during the execution of the AMG.

At the present stage, the source transition time cannot be adjusted to

control the injection rate and this rate is always equal to a small
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write time. Thus, it is not possible to check the entire ATAMM

operating point design procedure on the testbed. However, two

experiments are carried out to show the effect of dummy transitions in

improving T_hB and the use of control places to reduce resource

requirements. The analyzer is used to determine the performance of

the test algorithm from the graph diagnostic file. Detailed

information about the testbed can be found in [20].

Five test algorithms are chosen to test the design procedure,

performance model, and transformation techniques on algorithms with a

wide range of structural characteristics. Execution of all five

algorithms were simulated but only two algorithms were actually

implemented on the testbed, mainly due to the resource limitations and

inability to control the input data injection interval. The results

are stated and analyzed for each of the test algorithm execution in

the following discussion.

Test i. The primary objective of this test is to show the use of a

dummy transition as buffer in reducing the time/token ratio of a

parallel path circuit. Experimental time performance is also compared

with the theoretical time performance predicted by the performance

model. The test AMG and a transformed test AMG are shown in Figure

4.9(a) and (b) respectively. The purpose of the dummy transition is

to reduce the time/token ratio of the parallel path circuit for the

parallel paths between transition 1 and 3 in Figure 4.9(a) so that

TBOLB is improved to the time/token ratio of the largest process

circuit. All the transition times are expressed in seconds. Priority

ordering frc_ highest to lowest in the test AMG and transformed test

AMG are (3, 2, I) and (4, 3, 2, i) respectively. The dummy
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transition is implemented as an active transition of zero process

time. Read and write times of the transitions are assumed to be 220

ms and 255 ms for simulation and theoretical performance evaluation

(these communication times were measured for the testbed in [20] for

two functional units). Lower bounds for TBIO and TBO are calculated

for both the test AM_ and the transformed test AMG. It is assumed in

simulations and experiments that no resource is needed to implement a

dummy transition. Both the AMY's are executed and simulated for two

functional units which are the maximum resource requirements to

achieve TBOLB and TBIOLB in either case. Although experimental

and simulated time performance are expected to be TBIOLB and

TBOLB , there can be some differences due to the following reasons.

The simulated performance measures are always a little higher than the

theoretical expected performance. This is due to lost clock cycles in

assigning transitions to resources and the fact that even a dummy

transition will also require a resource, though only for a small

duration. Experimental time perfo_ values are higher in some

cases from the theoretical expected time performance due to one or

more of the following reasons. First, Ethernet cannot implement more

than one read or write operation at the same time. Second, as the

dummy transition is nonideal, it requires a resource. Third, read and

write times for NMG transitions were measured with no contention,

which is not true when a number of transitions try to communicate at

the same time. Fourth, there is a slight increase in actual process

times for transitions due to interrupt from other functional units.

Experimental and simulation results for both AMY's are presented in

Figures 4. i0 through 4.13 and compared with theoretical performance

lower bounds in Table 4. I. The node activity display shows the
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TABLE 4.1

COMPARISON OF RESULTS FOR TEST 1

Experimental ,ulation
Reeults Results

Av. Av. Av.
TBO 11910 TBO TBIO

for Teet 13.13 16.41

1

q

13.28 18.53

beoretlcal
LB'8

rBo._

Transformed

AMG for Test
1

9.23 18.43 g.1 18.53 8.695
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execution of transitions with time in the order of transition numbers,

with transition 1 being the lowest. TBI, TBO, and TBIO of the

input/output display are to be divided by i00 for converting all times

to seconds. From the input/output display there is a significant gain

in TBO by the transformation. Performance varies very little with

task inputs. From the table, it can be seen that TBOLB is improved

frcm 13.17s to 8.695s by the dummy transition. It can also be seen

that the experimental and simulated performances are very close to the

theoretical lower bounds of performance, except for the TBO of the

transformed test AMG. This is primarily due to the fact that the read

of transition 3 and that of the dummy transition in Figure 4.9 (b)

cannot occur at the same time. Also, as there are only two resources

with the priority of transition 1 being the lowest, no new task input

will be accepted until the operation of the dtmm_ transition is

completed. All other results are as expected.

Test_____22.This test illustrates the use of a control place to reduce

resource requirements (peak of TRE) while maintaining TBgIB. Also,

theoretical and experimental time performances are compared. The test

AMG and the transformed 7kMG are shown in Figures 4.14(a) and 4.14(b)

respectively. The test AMG of Figure 4.14(a) requires three resources

to operate at TBIOLB and TBOLB. The AMG is transformed as shown

in Figure 4.14 (b) which achieves TBOLB with only two resources at

the expense of increasing TBIOLB (assuming that no resources are

required for the dummy transition). All the transition times are

expressed in seconds. Priority ordering from highest to lowest for

the AMG of Figures 4.14(a) and 4.14(b) are 4, 2, 3, 1 and
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5, 3, 4, 2, 1 respectively. Read and write times for each NMG

transition were measured in [20] to be 0.275s and 0.31s respectively

for three resources. The test AMG of Figure 4.14(a) and the

transformed AMG of Figure 4.14(b) are run on the testbed and simulated

with three and two resources respectively. Experimental and

simulation results are described in Figures 4.15 through 4.18 and

compared with theoretical lower bounds in Table 4.2. In Figures 4.15

through 4.17, TBI, TBIO, and TBO are divided by i00 to get time in

seconds. The times in the input/output display of Figure 4.18 are

divided by 18.2 to get time in seconds. It can be observed that the

transformed AMG achieves almost the same TBO as the original AMG;

however, TBIO is increased by nearly the time for transition 3 of

Figure 4.14 (a) in the experiment and simulation. The differences in

experimental results from theoretical lower bounds for both the AMG's

are primarily due to nonideal dummy transition and Ethernet

communication problems, as described in Test I. The difference in the

simulation results from the theoretical expected performanc_ is mainly

due to lost clock cycles in assigning transitions to reso_ and due

to nonideal dummy transitions. The experimental performance for the

transformed AMG unex_ly went through a wide variation initially.

One probable reason is the lack of proper injection control, which may

cause the cormm/nication software (for implementing Ethernet

_ication) to be unpredictable. All other results are as

expected.

Test 3. This is a simulation for the execution of a test algorithm

shown in Figure 4.19(a) to check the ATAMM operating point design

procedure. Let T = I000 time units. The read and write times of the



TABU[ 4.2

COMPARISON OF RESULTS FOR TEST 2

Algorlthme

Expoflmental
b.._, (,)

Av. Av.
TBO TBIO

• l llm ii.

Simulation ITheoreticol

_,,.lt, (,) uB',(,)
Av. Av.

mo TBIO TBOI.n TBIOLe

AUG for Teet 5.00
2

8.25 4.98 8.36 4.86 8.255

Transformed

NdO for Te_

2

5.16 9.81 5.13 9.56 4.70 9.4
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Figure 4.19. For Test 5, (a) AMG. (b) !SRE.
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NMG transitions are assumed to be zero. Then TBIOLB = 4T, TrLB =

5T, and TBOLB = 3T. No further improvement of TBOLB is possible

as it is determined by the time/token ratio of the recursion circuit.

Hence, TBIOAL B = 4T, TrAI B = 5T, and TBOAL B = 3T. SRE is shown

in Figure 4.19(b). By checking out all TB0 > TBOAL B, Rma x = 3,

and Rmi n = 2. Also TC = 8T, TCE = 8T units of computer time. As

[TCE/TBOALB] = 3, Rma x cannot be improved any further

and Strategies B and C cannot be applied. So if R > 3, the ATAMM

operating point is determined by Step 3 as TBI = 3T, TBIO = 4T, Tr --

5T, and TB0 = 3T for all task inputs. As there are no floating

transitions, Application 4 is not required. For R = 2, Strategy A of

Step 4 in the ATAMM operating point design determines TBI = 4T, TBIO =

4T, TT = 5T, and TBO = 4T for all task inputs. The AMG execution at

the operating points determined by Steps 3 and 4 are simulated and

results are described in Figures 4.20 and 4.21 respectively. The

achieved time performance in simulation is very close to the predicted

theoretical time performance of the ATAMM operating point design. In

the simulation of the operating point given by Step 3, TBI = 3.02T is

used instead of 3T because TBOAI B is slightly higher in the

simulation due to lost clock cycles.

Test 4. The algorithm of Test 4 is a subsystem of a Space

Surveillance System and is described in Figure 4.22(a) (ignore the

dotted line). Let T = i00 time units. The read and write times of

NMG transitions are assumed to be zero. Then, TBIOLB = TgLB =

TBIOAL B = TgAL B = 18T and _ = TBOAL B = 10T. SRE is shown

in Figure 4.22(b). By checking out all TBI > TBOAL B, Rma x = 4,

and Rmi n = 3. Now TCE = 25T units of computer time. As
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Figure 4.22. (e) AMG for Test 4.
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[TCE/TBOALB] = 3, it may be possible to lower Rma x to 3.

A control place is placed from transition 5 to 3 for that purpose, as

shown by the dotted line in Figure 4.22(a). The new SRE is shown in

Figure 4.23(a). It was checked by the Ttime program that TBIOLB ,

TYLB , and TBOLB were unc_ed by the control place. By checking

all TBI > 10T, Rma x = 3, and Rmi n = 2. Hence, Strategies B and C

of the ATAMM operating point design are not appropriate as Rma x will

always be equal to or more than 3. For R > 3, Step 3 of the ATAMM

operating point design determines TBI = loT and TBIO = TY = 18T for

all task inputs. For R = 2 Strategy A of the ATAMM operating point

design determines TBI = 17T, TBO = 17T, and TBIO = TF = 18T. _ne

graph play for a single task and the total graph play for TBO = loT is

shown in Figures 4.23 (b) and 4.24 respectively. By inspection of TGP,

no dummy transition is required to enforce SGP and SRE. The

execution at the operating points, determined by Steps 3 and 4, are

simulated and the results are described in Figures 4.25 and 4.26

respectively. The achieved time performance in simulation is very

close to the predicted time performance of the ATAMM operating point

design.

Test 5. Execution of the algorithm marked graph in Figure 3.3 is

simulated for all the operating points developed in Section 4.2. All

the process times for the transitions of the AMG are multiplied by T

(T = i000 time units) in the simulation. The read and write times of

the NMG transitions are assumed to be zero. The results of the

simulation for the operating points of Steps 3 through 6 are described

in Figures 4.27 through 4.30 respectively. It is to be noted that the

TBI's used in the simulation for the operating points in Steps 4
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through 6 are slightly higher than the value predicted in the ATAMM

operating point design. The reason is, again, a slight increase in

the transition times of the AMG in the simulation due to the time

needed to assign transitions to resources.

4.4 Summary

A new term, the ATAMM operating point (AOP), is defined to

express all the parameters of an algorithm execution in the ATAMM data

flow architecture. The characteristics of an AOP are explored for

finite resources and under specified transformations. The absolute

lower bounds for performance measures are defined. TBIOAIB,

TTALB, and TBOAL B are determined under transformations by control

places and dummy transitions. A procedure is developed for operating

point design given the number of functional units. The performance

model and the use of dummy transitions and control places for

improving time performance and resource requirements are illustrated

through experiments and simulations. The ATAMM operating point design

methodology is checked by simulations on test algorithms.



CHAPTERFIVE

CONCIDSION

Performance modeling and enhancement for concurrent processing in

the ATAMM data flow ardhitecture have been the primary thrust for this

research. Several key results are achieved in that respect. First, a

performance model is developed to determine performance of an

algorithm executed periodically in the ATA_ data flow architecture.

Second, algorithm transformation techniques are identified and their

applications are illustrated in improving time performance and

resource (computing element) requirements. Third, an ATAMM operating

point design procedure is developed to specify time performance and

input data injection control for periodic execution of an algorithm on

an ATA_4 data flow architecture. Significant results in these three

areas have been discussed. Finally, future research topics are

suggested.

The starting point of this research has been to define the

computing environment and performance measures for the periodic

execution of algorithms in the ATAMM data flow architecture. The

architecture is assumed to have R identical computers, or functional

units, and executes algorithms according to the rules of ATAMM. These

computers, or functional units, are also denoted by the terms resource

and computing element. The performance of an algorithm is measured by

the time between input and output (TBIO), task time (T_), and time

between outputs (TBO). Graph theoretic and resource imposed bounds

147
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are developed for these performance measures. Also, the graph

execution pattern and resource requirements are defined through SGP,

SRE, TGP, and TRE. These results establish a new model for evaluating

performance of algorithms in a hardware independent context as long as

the architecture obeys the rules of ATAMM.Hence, it is now possible

to compare the relative merits of different algorithm decompositions

with respect to performance and resource requi_ts for the ATAMM

data flow architecture.

The performanc_ model enables the user to identify the cause of

performance limitations. It is observed that the critical circuits of

the CMG and the critical paths of the MAMG are the detelmtining factors

for the graph theoretic lower bounds of time perfo_. Also, the

total resource requirement (the peak value of TRE) is determined by

the shape of the resource envelope (SRE) and TBO. Hence, it may be

possible to enhance performance or reduce resourv_ requirements by

transforming the algorithm marked graph while maintaining its

equivalency. Algorithm transformation techniques are identified which

can be used to improve time performance or aid resource envelope

modification. Transformation of an AMG may, or may not, involve

decomposition of transitions. This research has concentrated on two

of the transformation techniques, namely dummy transitions and control

places. Concentration on these techniques is due to their wide range

of applications, ease of implementation, and negligible increase in

cormnunication time by transformation. The most important contribution

of this research is the application of dummy transitions which provide

storage space for output of transitions. Dummy transitions have made

parallel path circuits in the CMG insignificant for determining
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TBOLB. Thus, it is now possible to use control places and dunmy

transitions together to change the SRE without increasing TBOLB.

Dummy transitions can improve TBOLB by reducing the time/token ratio

of dominant parallel path circuits. Another application of durany

transitions is to enforce the SRE as the resource envelope for all

task inputs. Hence, it is now possible to enhance the throughput of

an algorithm execution in the ATAMM data flow architecture. Also, the

algorithm marked graph can be transformed according to the resource

capability of the architecture or to make the resourc_ need for

periodic operation predictable.

The ATAMM operating point (AOP) design procedure uses the

knowledge of the performance model and algorithm transformation to

specify an operating point for executing an algorithm in the ATAMM

data flow architecture. The only transformations used for the AOP

design are dummy transitions as buffer and control places. The AOP

design describes the procedure to achieve the absolute lower bound of

time performance under these transformations. It proposes three

strategies corresponding to sacrificing pipeline concurrency, parallel

concurrency, and a combination of both to meet the limited

availability of resources. Pipeline and parallel concurrency can be

reduced by reducing input data injection rate or by transforming the

AMG to modify the shape of SRE respectively. Although the design

procedure is partially heuristic because of the NP completeness of the

problem, it allows the user to make a trade-off between pipeline and

parallel concurrency for limited availability of resources.

Test algorithms are simulated by a PC-based simulator [21] to

validate the ATAMM operating point design procedure. The read and
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write times of transitions are assumedto be zero. Process times of

transitions are in the order of hundreds of clock cycles to keep the

algorithms at a large-grain level. This order of transition times are

appropriate as the simulator takes less than ten clock cycles for

assigning transitions to resources. Dummytransitions and control

places are realized as regular active transitions (of zero process

time) or active places respectively. It is assumedthat a dummy

transition does not require a resource, simulated performance of

algorithms are always very close to that predicted by the AOPdesign

(within 2.1% for TBIO and within 5.8% for TBI and TBO). One

significant observation is that the proper input data injection

interval in the simulation is slightly higher than that predicted by

the AOPdesign (within 5.8%). These differences between theoretical

and simulated results are mainly due to a slight increase in

transition times by the unaccounted clock cycles in assigning

transitions to resources.

Test algorithms are executed on a testbed ATAMM data flow

architecture [20] to verify the performance model and the use of dunm_

transitions and control places for transformation of algorithms.

Dummy transitions and control places are implemented as active

transitions of zero process time and active places respectively. Read

and write times for the transitions in the experiments are assumed to

be those measured in [20]. The largest p_s time among the

transitions of the test algorithm is kept at least ten times higher

than read or write times for maintaining algorithms in the large-grain

level. The performance model is verified as experimental time

performances are close to theoretical time performances (within 4.4%
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for TBIO and within 9.8% for TBO). The use of dummytransitions for

making parallel path circuits insignificant is verified in Test I.

The TBOof the transformed AMGin Test 1 is determined by the

time/token ratio of the largest process circuit (experimental TBOis

6.15%more). A control place and a dummytransition together in Test

2 have reduced the total resource requirement from 3 to 2 while

maintaining the change in THOwithin 3%. The larger differe/Ic_

between the experimental and theoretical results compared to the

simulation can be attributed mainly to two reasons. First,

implementing a dummytransition as an active transition has a much

greater effect in the testbed. The dummytransition requires read and

write times in the experiments and hence, requires a resource for a

considerable amount of time contrary to the assumption. Second, as

pointed out in [20], Ethernet cannot impl_t concurrent read or

write operations. This fact is not taken into account in the

measurement of read and write times. The experimental results suggest

that a better method of implementing a dungy transition and a more

accurate _ication model for read and write times are necessary.

There are several topics that can be the subject of future

research. On the theoretical side, the following problems need

attention. In order to properly decompose an algorithm, a specific

definition of large granularity is needed corresponding to the

communication time of an ATAMM data flow architecture. The first step

is to develop a general and more accurate model for read and write

times. The use of duchy transitions of finite time, control places

with initial tokens, and predefined tokens in performance improvement

and reduction of resource requirements needs to be explored.
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Experiments and simulations have shownthat the proper input data

injection interval is slightly higher than the predicted value. This

observation and the possibility of slight variation in transition

times suggest that a_tic injection control maybe necessary.

Execution of multiple AMG'sor AMG'swith multiple input and output

transitions provide a complex, but interesting, topic of future

research. Finally, the performance of algorithms with conditional

data flow need to be analyzed. On the implementation side, realizing

dummy transitions as buffers in the functional unit or graph manager,

a better technique for measuring _ication times, a fully

automated ATAMM operating point design procedure, and transformations

of algorithms by dummy transitions and control places in real time are

useful topics for future research.
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APPENDIX

This appendix is an excerpt from [II]. The ATA_4model is

studied analytically to determine important graph operating

characteristics. First, a state description which expresses the next

graph marking as a function of the present marking and a vector

indicating which transition is to be fired is developed. Then the

marked graph properties of reachability, liveness, and safeness are

considered for the CMG. Two excellent papers by Murata [13, 18] on

properties of marked graphs are the sources for muchof the material

presented in this appendix.

Let G be a marked graph consisting of m places and n

transitions. The m-vector Mk denotes the marking vector for G

resulting from the firing of somesequ_ of k transitions. The

following two definitions are necessary to develop the state

description of the fI_G.

Definition A.I: Complete Inci4ence Matrix. The complete incidence

matrix for a marked graph G is the (n x m) matrix A = [aij ] having

rows corresponding to transitions and columns corresponding to places

and where

aij = I +I

I

I 0

(-i) {if place j is incident at transition i

and directed out of (into) the transition}

if place j is not incident at transition j.
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Definition A. 2: Elementa!vy Firinq Vector. An elementary firing

vector uk is an n-vector having all zero entries except for the

ith component, which is 1 denoting that transition i is the kth

transition to fire in some transition firing sequence.

To gain insight to the state equation description, it is helpful

to consider the firing of transition k. If

is an input (output) place to transition k.

is enabled if M(i) = 1 for each input place.

aki = -i (+I), place i

Therefore, transition k

When transition k fires,

one token is removed from each input place and one token is added to

each output place. These observations lead to the following next

state description for a marked graph.

P_operty A.I: Next State Description. For a marked graph G with

present marking vector Mk_ 1 and elementary firing vector Uk, the

next marking vector is given by

Mk= Mk_ 1 + ATuk .

The next state description can be used to express the graph

marking resulting from the application of sequences of elementary

firing vectors. This is done in the next definition and property.

Definition A.3: Firing Count Vector. Let (Ul, u2,...,Ud) be a

sequence of elementary firing vectorstakingamarkedgraph G from an

initial marking M 0 to a destination markingM d. The firing count

vector xd forthis firing sequence is defined by
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Property A._: State Equation Description. For a marked gra;_h G with

initial marking vector M0, the marking vector resulting from the

application of an elementary firing vector sequence

(uI, u2,...,Ud) is given by

%=M o + ATe.

Using the state description of a marked graph as a basis, the

property of reachability is investigated. Necessary and sufficient

conditions for a (3K_ marking vector to be reachable from an initial

marking are established, and it is shown that the number of tokens

contained in any directed circuit of the _ is _iant under

transition firings.

Definition A.4; Reachabilitv. A marking Md is reachable from an

initial marking M O if there exists a sequence of elementary firing

vectors that transforms MO to Md.

The following definition is required to state the reachability

conditions for a (_4G.

Definition A. 5: Fundamental Circuit Matrix.

connected marked graph G. The set of (m-n+l)

Let T be a tree of a

circuits, each uniquely

formed by appending one cotree edge to the tree, is called the set of

fur_amental circuits of G for tree T [28]. The fundamental circuit

matrix for G for tree T is the (m-n+l) x (m) matrix Bf = [bij]

having rows corresponding to fundamental circuits and columns

corresponding to places, and where bij is determined by the rules as

described on the next page.
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bij

I +I(-i) if place j is contained in f-circuit i and the

i place and circuit directions agree (disagree)

I

i 0 if place j is not contained in f-circuit i.

Property A. 3: Reachability in the CMG. In a computational marked

graph G, a marking Md is reachable frown an initial marking MO if

and only if BfMd = BfMo, where Bf is a fundamental circuit

matrix for G.

Proof. It is shown in [13] (Theorem 3) that the property is true for

marked graphs containing no token-free directed circuits. By the

construction rules for the (_G, directed circuits occur in exactly

four ways. First, each NMG consists of a directed circuit which

contains an initial marking token in the Process Ready place. Seoond,

a directed circuit is formed each time an NMG is linked to another

NMG. Since one of the two linking places contains an initial marking

token and both places are contained in the circuit, this circuit is

never token free. Third, directed circuits exist in the CMG

corresponding to interconnected feedforward paths in the algorithm

marked graph. Each such circuit contains one or more backward

directed control edge containing one initial marking token. Fourth,

directed circuits exist in the CMG corresponding to directed circuits

in algorithm marked graph. Each such circuit contains exactly one

forward directed edge containing one initial marking token which

represents initial condition data. Therefore, the _ contains no

token-free directed circuits and the property follows.
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As a direct consequenceof the reachability property of the CMG,

it can be shownthat the numberof tokens in any directed circuit is

constant, This characteristic i_ stated as Property A.4.

ProDertv A.4" Token_ Count Invar!ance. In a C_4G, the number of tokens

contained in a directed circuit is invariant under transition firing.

Proof. Consider a directed circqit C of a (_G. The entries in the

row of a circuit matrix B correslQonding to C are +I in columns

representing edges in C and are O otherwise. If M is a marking

vector, the component of I_ corresponding to C is equal to the number

of tokens in directed circuit C marking M. Therefore, if Md is any

marking reachable from an initial marking MO, it follows from

Property A.3 that _M d = _O" That is, the number of tokens in

directed circuit C under initial _arking MO is equal to the number

of tokens under any marking Md reachable from MO. This completes

the proof.

Next, liveness and a closely related property called consistency

are considered. It is shown that the (3MG is live and consistent.

Definition A.6: Liv_ness. A marked graph G is said to be live for a

marking F if, for all markings reachable from M, it is possible to

fire any transition of G by p_sing through some transition firing

sequerK_.

Property A.5: Liven_ss in the CM_. The computational marked graph is

live for all appropriate initial marking vectors.

Proof. It is shown in [18] (property 2) that a marked graph G is live

for a marking M, if _ only if, G contains no token-free directed

circuits in marking M. As stated in the proof of Property A. 3, for



all appropriate initial markings MO,the _ contains no token-free

directed circuits. Tnerefore, the property follows.

Definition A. 7: Consists. A marked graph G is said to be

consistent if there exists a marking M and a transition firing

sequence S from M back to M such that every transition occurs at least

once in S.

Property A.6: Consistency in the (_G. A connected computational

marked graph G is consistent. In addition, each transition of G

occurs an equal number of times in a firing sequence frown a marking M

back to M.

Proof. From Property A.2, if a CMG is consistent then there exists a

marking Md = M0 and a firing count vector xd > 0 such that

ATxd = O. The converse is also true. The incidence matrix for a

marked graph G is an (n x m) matrix A. If G is connected, then it is

known [28] that the rank of A is n-l, and thus the null space of AT

has dimension one. It is observed that each row of AT has one (I),

one (-i), and all remaining terms are zero (0). Therefore, if

denotes the jth column of AT, it follows that

n

7_ Cj = 0.
j=l

Thus, there exists a vector xd = [k k .... k] T, k > 0, which

uniquely satisfies ATxd = 0. This completes the proof.

The final graph property considered in this section is safeness.

This property is first defined and then it is shown that a CMG is

safe.
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Definition A.8: Safeness. A marked graph G is said to be safe for

marking M if, for all markings reachable from M, no plaoe contains

more than one token.

property A. 7: Safeness in the C_G. The computational marked graph is

safe for all appropriate initial marking vectors.

Proof. By Property A.4, the token count for each directed circuit of

the C_3 is invariant under transition firing. Therefore, it is

sufficient to show that each edge of the CMG belongs to at least one

directed circuit containing a single token. By the construction rules

for the CMG, all CMG edges can be classified into two groups NMG edges

and linking edges. NMG edges occur in groups of three and always form

a directed circuit oontaining one token. _ edges occur in

pairs, one forward directed and one backward directed, and also form a

directed circuit with the forward directed edges of the NM_. One of

the linking edges, but not both, always contains one token while the

forward directed edges of the NM_ contain no tokens. Therefore, each

edge of the CMG is contained in a directed circuit with one token, and

the property follows.
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